The effects of Zr solute and loading mode on the structure, mechanics, and mechanical properties of nanocrystalline (NC)-Cu are studied using molecular dynamics simulations. Doping Zr atoms into NC-Cu systems stabilizes grain boundaries, suppresses dislocation nucleation and propagation, and increases the elastic deformation phase during tensile, compressive, and shear deformation processes. The tensile and shear strengths of NC-Cu/Zr systems are maximum at Zr concentrations of 5% and 3%, respectively. Young's modulus and mechanical strength of NC-Cu/Zr systems under compression both decrease with increasing Zr concentration. Grain boundary sliding dominates shear deformation and induces dislocation activity.

1.
J. R.
Weertman
, in
Nanostructured Materials: Processing, Properties and Potential Applications
, edited by
C. C.
Koch
(
William Andrew
,
Norwich
,
NY
,
2002
), p.
397
.
2.
J.
Schiotz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
3.
S. P.
Wen
,
R. L.
Zong
,
F.
Zeng
,
S.
Guo
, and
F.
Pan
,
Appl. Surf. Sci.
255
,
4558
(
2009
).
4.
R.
Kirchheim
,
Acta Mater.
55
,
5129
(
2007
).
5.
P. C.
Millett
,
R. P.
Selvam
, and
A.
Saxena
,
Acta Mater.
54
,
297
(
2006
).
6.
P. C.
Millett
,
R. P.
Selvam
, and
A.
Saxena
,
Mater. Sci. Eng. A: Struct. Mater.
431
,
92
(
2006
).
7.
X.
Wang
,
X.
Dong
, and
J.
Wu
,
Appl. Surf. Sci.
255
,
9273
(
2009
).
8.
J. T.
Zhao
,
J. Y.
Zhang
,
L. F.
Cao
,
Y. Q.
Wang
,
P.
Zhang
,
K.
Wu
,
G.
Liu
, and
J.
Sun
,
Acta Mater.
132
,
550
(
2017
).
9.
M. A.
Atwater
,
R. O.
Scattergood
, and
C. C.
Koch
,
Mater. Sci. Eng. A
559
,
250
(
2013
).
10.
P.
Zhang
,
J. Y.
Zhang
,
J.
Li
,
G.
Liu
,
K.
Wu
,
Y. Q.
Wang
, and
J.
Sun
,
Acta Mater.
76
,
221
(
2014
).
11.
K.
Sikdar
,
A.
Mahata
,
B.
Roy
, and
D.
Roy
,
Mater. Des.
164
,
107564
(
2019
).
12.
N. Q.
Vo
,
J.
Schafer
,
R. S.
Averback
,
K.
Albe
,
Y.
Ashkenazya
, and
P.
Bellon
,
Scr. Mater.
65
,
660
(
2011
).
13.
T.
Frolov
,
K. A.
Darling
,
L. J.
Kecskes
, and
Y.
Mishin
,
Acta Mater.
60
,
2158
(
2012
).
14.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
15.
A.
Stuckowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
16.
P.
Hirel
,
Comput. Phys. Commun.
197
,
212
(
2015
).
17.
J. L.
Finney
,
J. Comput. Phys.
32
,
137
(
1979
).
18.
V.
Borovikov
,
M. I.
Mendelev
, and
A. H.
King
,
Int. J. Plast.
109
,
79
(
2018
).
19.
L. M.
Shen
,
Acta Mech. Sin.
28
(
4
),
1125
(
2012
).
20.
N. Q.
Vo
,
J.
Schafer
,
R. S.
Averback
,
K.
Albe
,
Y.
Ashkenazy
, and
P.
Bellon
,
Scr. Mater.
65
,
660
(
2011
).
21.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
)
.
22.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
23.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
24.
J.
Chen
,
M. A.
Tschopp
, and
A. M.
Dongare
,
J. Appl. Phys.
122
,
225901
(
2017
).
25.
C. D.
Wu
and
W. X.
Jiang
,
Thin Solid Films
638
,
258
(
2017
).
26.
A. M.
Dongare
,
A. M.
Rajendran
,
B.
LaMattina
,
M. A.
Zikry
, and
D. W.
Brenner
,
Comput. Mater. Sci.
49
,
260
(
2010
).
You do not currently have access to this content.