Flexoelectricity is a property of dielectric materials whereby they exhibit electric polarization induced by strain gradients; while this effect can be negligible at the macroscale, it can become dominant at the nanoscale, where strain gradients can turn out to be tremendous. Previous works have demonstrated that flexoelectricity coupled with piezoelectricity enables the mechanical writing of ferroelectric polarization. When considering ferroelectric materials with out-of-plane polarization, the coupling of piezoelectricity with flexoelectricity can insert a mechanical asymmetry to the system and enable the distinction of oppositely polarized domains, based on their nanomechanical response. Using atomic force microscopy and, more specifically, contact resonance techniques, the coupling of flexoelectricity to piezoelectricity can be exploited to mechanically read the sign of ferroelectric polarization in a non-destructive way. We have measured a variety of ferroelectric materials, from a single crystal to thin films, and domains that are polarized down always appear to be stiffer than oppositely polarized domains. In this article, we demonstrate experimentally that the phenomenon is size-dependent and strongly enhanced when the dimension of the material is reduced to nanoscale in thin films. Ultimately, we demonstrate how the sensitivity in mechanical reading of ferroelectric polarization can be improved by appropriately tuning the mechanical stiffness of the cantilevers.

1.
L. W.
Martin
and
A. M.
Rappe
, “
Thin-film ferroelectric materials and their applications
,”
Nat. Rev. Mater.
2
(
2
),
16087
(
2016
).
2.
N.
Setter
,
D.
Damjanovic
,
L.
Eng
,
G.
Fox
,
S.
Gevorgian
,
S.
Hong
,
A.
Kingon
,
H.
Kohlstedt
,
N. Y.
Park
,
G. B.
Stephenson
,
I.
Stolitchnov
,
A. K.
Taganstev
,
D. V.
Taylor
,
T.
Yamada
, and
S.
Streiffer
, “
Ferroelectric thin films: Review of materials, properties, and applications
,”
J. Appl. Phys.
100
,
109901
(
2006
).
3.
P.
Zubko
,
G.
Catalan
, and
A. K.
Tagantsev
, “
Flexoelectric effect in solids
,”
Annu. Rev. Mater. Res.
43
(
1
),
387
(
2013
).
4.
H.
Lu
,
C. W.
Bark
,
D.
Esque de los Ojos
,
J.
Alcala
,
C. B.
Eom
,
G.
Catalan
, and
A.
Gruverman
, “
Mechanical writing of ferroelectric polarization
,”
Science (80-.)
336
(
6077
),
59
61
(
2012
).
5.
P.
Sharma
,
S.
Ryu
,
J. D.
Burton
,
T. R.
Paudel
,
C. W.
Bark
,
Z.
Huang
,
Ariando
,
E. Y.
Tsymbal
,
G.
Catalan
,
C. B.
Eom
, and
A.
Gruverman
, “
Mechanical tuning of LaAlO3/SrTiO3 interface conductivity
,”
Nano Lett.
15
(
5
),
3547
(
2015
).
6.
M.-M.
Yang
,
D. J.
Kim
, and
M.
Alexe
, “
Flexo-photovoltaic effect
,”
Science
360
,
904
-
907
(
2018
).
7.
D.
Berlincourt
and
H.
Jaffe
, “
Elastic and piezoelectric coefficients of single-crystal barium titanate
,”
Phys. Rev.
111
(
1
),
143
(
1958
).
8.
C.
Stefani
,
L.
Ponet
,
K.
Shapovalov
,
P.
Chen
,
E.
Langenberg
,
D. G.
Schlom
,
S.
Artyukhin
,
M.
Stengel
,
N.
Domingo
, and
G.
Catalan
, “
Mechanical softness of ferroelectric 180° domain walls
,”
Phys. Rev. X
10
(
4
),
041001
(
2020
).
9.
K.
Cordero-Edwards
,
N.
Domingo
,
A.
Abdollahi
,
J.
Sort
, and
G.
Catalan
, “
Ferroelectrics as smart mechanical materials
,”
Adv. Mater.
29
,
1702210
(
2017
).
10.
A.
Abdollahi
,
C.
Peco
,
D.
Millán
,
M.
Arroyo
,
G.
Catalan
, and
I.
Arias
, “
Fracture toughening and toughness asymmetry induced by flexoelectricity
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
92
(
9
),
094101
(
2015
).
11.
J. P.
Killgore
,
D. G.
Yablon
,
A. H.
Tsou
,
A.
Gannepalli
,
P. A.
Yuya
,
J. A.
Turner
,
R.
Proksch
, and
D. C.
Hurley
, “
Viscoelastic property mapping with contact resonance force microscopy
,”
Langmuir
27
(
23
),
13983
(
2011
).
12.
U.
Rabe
,
S.
Amelio
,
M.
Kopycinska
,
S.
Hirsekorn
,
M.
Kempf
,
M.
Göken
, and
W.
Arnold
, “
Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy
,”
Surf. Interface Anal.
33
(
2
),
65
(
2002
).
13.
J. P.
Killgore
and
F. W.
Delrio
, “
Contact resonance force microscopy for viscoelastic property measurements: From fundamentals to state-of-the-art applications
,”
Macromolecules
51
(
18
),
6977
(
2018
).
14.
W.
Arnold
,
S.
Amelio
,
S.
Hirsekorn
, and
U.
Rabe
, “
Quantitative Contact Spectroscopy and Imaging by Atomic-Force Acoustic Microscopy,
,”
MRS Online Proceedings Library
591
,
176
187
(
1999
).
15.
V.
Nagarajan
,
J.
Junquera
,
J. Q.
He
,
C. L.
Jia
,
R.
Waser
,
K.
Lee
,
Y. K.
Kim
,
S.
Baik
,
T.
Zhao
,
R.
Ramesh
,
P.
Ghosez
, and
K. M.
Rabe
, “
Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures
,”
J. Appl. Phys.
100
(
5
),
051609
(
2006
).
16.
U.
Rabe
,
S.
Amelio
,
E.
Kester
,
V.
Scherer
,
S.
Hirsekorn
, and
W.
Arnold
, “
Quantitative determination of contact stiffness using atomic force acoustic microscopy
,”
Ultrasonics
38
,
430
(
2000
).
17.
T.
Tsuji
,
H.
Ogiso
,
J.
Akedo
,
S.
Saito
, and
K.
Fukuda
, “
Elasticity characterization of piezoelectric domain boundary by ultrasonic atomic force microscopy
,” in
16th World Conference
(Citeseer,
2004
), Vol.
1
.
18.
E.
Langenberg
,
D.
Saha
,
M. E.
Holtz
,
J. J.
Wang
,
D.
Bugallo
,
E.
Ferreiro-Vila
,
H.
Paik
,
I.
Hanke
,
S.
Ganschow
,
D. A.
Muller
,
L. Q.
Chen
,
G.
Catalan
,
N.
Domingo
,
J.
Malen
,
D. G.
Schlom
, and
F.
Rivadulla
, “
Ferroelectric domain walls in PbTiO3 are effective regulators of heat flow at room temperature
,”
Nano Lett.
19
,
7901
(
2019
).
19.
E.
Langenberg
,
H.
Paik
,
E. H.
Smith
,
H. P.
Nair
,
I.
Hanke
,
S.
Ganschow
,
G.
Catalan
,
N.
Domingo
, and
D. G.
Schlom
, “
Strain-engineered ferroelastic structures in PbTiO3 films and their control by electric fields
,”
ACS Appl. Mater. Interfaces
12
(
18
),
20691
(
2020
).
20.
E.
Soergel
, “
Piezoresponse force microscopy (PFM)
,”
J. Phys. D: Appl. Phys.
44
(
46
),
464003
(
2011
).
21.
U.
Rabe
,
S.
Amelio
,
S.
Hirsekorn
, and
W.
Arnold
, “
Imaging of ferroelectric domains by atomic force acoustic microscopy
,”
Acoust. Imaging
25
,
253
260
(
2002
).
22.
U.
Rabe
,
M.
Kopycinska-Müller
, and
S.
Hirsekorn
, “
Atomic force acoustic microscopy
,” in
Acoustic Scanning Probe Microscopy
, edited by
F.
Marinello
,
D.
Passeri
, and
E.
Savio
(
Springer
,
Berlin
,
2013
).
23.
J.
Očenášek
,
H.
Lu
,
C. W.
Bark
,
C. B.
Eom
,
J.
Alcalá
,
G.
Catalan
, and
A.
Gruverman
, “
Nanomechanics of flexoelectric switching
,”
Phys. Rev. B
92
,
035417
(
2015
).
24.
N.
Domingo
,
L.
Lopez-Mir
,
M.
Paradinas
,
V.
Holy
,
J.
Zelezny
,
D.
Yi
,
S. J.
Suresha
,
J.
Liu
,
C.
Rayan Serrao
,
R.
Ramesh
,
C.
Ocal
,
X.
Marti
, and
G.
Catalan
, “
Giant reversible nanoscale piezoresistance at room temperature in Sr2IrO4 thin films
,”
Nanoscale
7
(
8
),
3453
(
2015
).
25.
P. V.
Yudin
and
A. K.
Tagantsev
, “
Fundamentals of flexoelectricity in solids
,”
Nanotechnology
24
(
43
),
432001
(
2013
).
26.
Q.
Li
,
C. T.
Nelson
,
S.-L.
Hsu
,
A. R.
Damodaran
,
L.-L.
Li
,
A. K.
Yadav
,
M.
Mccarter
,
L. W.
Martin
,
R.
Ramesh
, and
S. V.
Kalinin
, “
Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling
,”
Nat. Commun.
8
,
1468
(
2017
).
27.
D.
Lee
,
A.
Yoon
,
S. Y.
Jang
,
J. G.
Yoon
,
J. S.
Chung
,
M.
Kim
,
J. F.
Scott
, and
T. W.
Noh
, “
Giant flexoelectric effect in ferroelectric epitaxial thin films
,”
Phys. Rev. Lett.
107
(
5
),
057602
(
2011
).
28.
B. C.
Jeon
,
D.
Lee
,
M. H.
Lee
,
S. M.
Yang
,
S. C.
Chae
,
T. K.
Song
,
S. D.
Bu
,
J. S.
Chung
,
J. G.
Yoon
, and
T. W.
Noh
, “
Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films
,”
Adv. Mater.
25
,
5643
5649
(
2013
).
29.
Y.
Qiu
,
H.
Wu
,
J.
Wang
,
J.
Lou
,
Z.
Zhang
,
A.
Liu
, and
G.
Chai
, “
The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: A role of flexoelectric effect
,”
J. Appl. Phys.
123
,
084103
(
2018
).
30.
Y.
Gu
,
Z.
Hong
,
J.
Britson
, and
L.-Q.
Chen
, “
Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity
,”
Appl. Phys. Lett.
106
(
2
),
022904
(
2015
).
31.
G. M.
Pharr
,
W. C.
Oliver
, and
F. R.
Brotzen
, “
On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation
,”
J. Mater. Res.
7
,
61
(
1992
).
32.
U.
Rabe
and
W.
Arnold
, “
Atomic force microscopy at MHz frequencies
,”
Ann. Phys.
506
,
589
(
1994
).
33.
D. C.
Hurley
, “
Contact resonance force microscopy techniques for nanomechanical measurements
,” in
Applied Scanning Probe Methods XI: Scanning Probe Microscopy Techniques
(
Springer
,
Berlin
,
2009
).
34.
J. A.
Turner
,
S.
Hirsekorn
,
U.
Rabe
, and
W.
Arnold
, “
High-frequency response of atomic-force microscope cantilevers
,”
J. Appl. Phys.
82
(
3
),
966
(
1997
).
35.
U.
Rabe
,
K.
Janser
, and
W.
Arnold
, “
Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment
,”
Rev. Sci. Instrum.
67
(
9
),
3281
(
1996
).
36.
A.
Abdollahi
,
F.
Vásquez-Sancho
, and
G.
Catalan
, “
Piezoelectric mimicry of flexoelectricity
,”
Phys. Rev. Lett.
121
(
20
),
205502
(
2018
).
You do not currently have access to this content.