Progress in computing architectures is approaching a paradigm shift: traditional computing based on digital complementary metal-oxide semiconductor technology is nearing physical limits in terms of miniaturization, speed, and, especially, power consumption. Consequently, alternative approaches are under investigation. One of the most promising is based on a “brain-like” or neuromorphic computation scheme. Another approach is quantum computing using photons. Both of these approaches can be realized using silicon photonics, and at the heart of both technologies is an efficient, ultra-low power broad band optical modulator. As silicon modulators suffer from relatively high power consumption, materials other than silicon itself have to be considered for the modulator. In this Perspective, we present our view on such materials. We focus on oxides showing a strong linear electro-optic effect that can also be integrated with Si, thus capitalizing on new materials to enable the devices and circuit architectures that exploit shifting computational machine learning paradigms, while leveraging current manufacturing infrastructure. This is expected to result in a new generation of computers that consume less power and possess a larger bandwidth.

1.
A. M.
Turing
, “
On computable numbers, with an application to the Entscheidungsproblem
,”
Proc. London Math. Soc.
s2-42
,
230
265
(
1937
).
2.
J.
von Neumann
, “
First draft of a report on the EDVAC
,”
IEEE Ann. History Comput.
15
,
27
75
(
1993
).
3.
G.
Wetzstein
,
A.
Ozcan
,
S.
Gigan
,
S.
Fan
,
D.
Englund
,
M.
Soljačić
,
C.
Denz
,
D. A. B.
Miller
, and
D.
Psaltis
, “
Inference in artificial intelligence with deep optics and photonics
,”
Nature
588
,
39
47
(
2020
).
4.
B. J.
Shastri
,
A. N.
Tait
,
T. F.
de Lima
,
W. H. P.
Pernice
,
H.
Bhaskaran
,
C. D.
Wright
, and
P. R.
Prucnal
, “
Photonics for artificial intelligence and neuromorphic computing
,”
Nat. Photonics
15
,
102
114
(
2021
).
5.
J.
Mumbru
,
G.
Panotopoulos
,
D.
Psaltis
,
X.
An
,
F. H.
Mok
,
S. U.
Ay
,
S. L.
Barna
, and
E. R.
Fossum
, “
Optically programmable gate array
,” in
International Topical Meeting on Optics in Computing (OC2000)
(
International Society for Optics and Photonics
,
2000
), p.
763
771
.
6.
E. G.
Paek
and
D.
Psaltis
, “
Optical associative memory using Fourier transform holograms
,”
Opt. Eng.
26
,
265428
(
1987
).
7.
R.
Athale
and
D.
Psaltis
, “
Optical computing: Past and future
,”
Opt. Photonics News
27
,
32
(
2016
).
8.
D.
Psaltis
and
R. A.
Athale
, “
High accuracy computation with linear analog optical systems: A critical study
,”
Appl. Opt.
25
,
3071
3077
(
1986
).
9.
D.
Psaltis
,
C. H.
Park
, and
J.
Hong
, “
Higher order associative memories and their optical implementations
,”
Neural Netw.
1
,
149
163
(
1988
).
10.
D.
Psaltis
,
D.
Brady
, and
K.
Wagner
, “
Adaptive optical networks using photorefractive crystals
,”
Appl. Opt.
27
,
1752
1759
(
1988
).
11.
D.
Psaltis
,
D.
Brady
,
X.-G.
Gu
, and
S.
Lin
, “
Holography in artificial neural networks
,”
Nature
343
,
325
330
(
1990
).
12.
D.
Silver
,
A.
Huang
,
C. J.
Maddison
,
A.
Guez
,
L.
Sifre
,
G.
van den Driessche
,
J.
Schrittwieser
,
I.
Antonoglou
,
V.
Panneershelvam
,
M.
Lanctot
,
S.
Dieleman
,
D.
Grewe
,
J.
Nham
,
N.
Kalchbrenner
,
I.
Sutskever
,
T.
Lillicrap
,
M.
Leach
,
K.
Kavukcuoglu
,
T.
Graepel
et al, “
Mastering the game of Go with deep neural networks and tree search
,”
Nature
529
,
484
489
(
2016
).
13.
D.
Silver
,
T.
Hubert
,
J.
Schrittwieser
,
I.
Antonoglou
,
M.
Lai
,
A.
Guez
,
M.
Lanctot
,
L.
Sifre
,
D.
Kumaran
,
T.
Graepel
,
T.
Lillicrap
,
K.
Simonyan
, and
D.
Hassabis
, “
A general reinforcement learning algorithm that masters chess, shogi and Go through self-play
,”
Science
362
,
1140
1144
(
2018
).
14.
R. H.
Dennard
,
F. H.
Gaensslen
,
H.
Yu
,
V. L.
Rideout
,
E.
Bassous
, and
A. R.
LeBlanc
, “
Design of ion-implanted MOSFET's with very small physical dimensions
,”
IEEE J. Solid-State Circuits
9
,
256
268
(
1974
).
15.
W.
Haensch
,
E. J.
Nowak
,
R. H.
Dennard
,
P. M.
Solomon
,
A.
Bryant
,
O. H.
Dokumaci
,
A.
Kumar
,
X.
Wang
,
J. B.
Johnson
, and
M. V.
Fischetti
, “
Silicon CMOS devices beyond scaling
,”
IBM J. Res. Dev.
50
,
339
361
(
2006
).
16.
M.
Reck
,
A.
Zeilinger
,
H. J.
Bernstein
, and
P.
Bertani
, “
Experimental realization of any discrete unitary operator
,”
Phys. Rev. Lett.
73
,
58
61
(
1994
).
17.
D. A. B.
Miller
, “
Self-configuring universal linear optical component
,”
Photonics Res.
1
,
1
15
(
2013
).
18.
Y.
Shen
,
N. C.
Harris
,
S.
Skirlo
,
M.
Prabhu
,
T.
Baehr-Jones
,
M.
Hochberg
,
X.
Sun
,
S.
Zhao
,
H.
Larochelle
,
D.
Englund
, and
M.
Soljačić
, “
Deep learning with coherent nanophotonic circuits
,”
Nat. Photon.
11
,
441
446
(
2017
).
19.
Y.
Zhang
,
C.
Fowler
,
J.
Liang
,
B.
Azhar
,
M. Y.
Shalaginov
,
S.
Deckoff-Jones
,
S.
An
,
J. B.
Chou
,
C. M.
Roberts
,
V.
Liberman
,
M.
Kang
,
C.
Ríos
,
K. A.
Richardson
,
C.
Rivero-Baleine
,
T.
Gu
,
H.
Zhang
, and
J.
Hu
, “
Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material
,”
Nat. Nanotechnol.
16
,
661
666
(
2021
).
20.
X.
Xiao
and
S. J.
Ben Yoo
, “
Scalable and compact 3D tensorized photonic neural networks
,”
in 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, pp. 1–3
.
21.
J.
Feldmann
,
N.
Youngblood
,
M.
Karpov
,
H.
Gehring
,
X.
Li
,
M.
Stappers
,
M.
Le Gallo
,
X.
Fu
,
A.
Lukashchuk
,
A. S.
Raja
,
J.
Liu
,
C. D.
Wright
,
A.
Sebastian
,
T. J.
Kippenberg
,
W. H. P.
Pernice
, and
H.
Bhaskaran
, “
Parallel convolutional processing using an integrated photonic tensor core
,”
Nature
589
,
52
58
(
2021
).
22.
M.
Miscuglio
and
V. J.
Sorger
, “
Photonic tensor cores for machine learning
,”
Appl. Phys. Rev.
7
,
031404
(
2020
).
23.
P.
Stark
,
F.
Horst
,
R.
Dangel
,
J.
Weiss
, and
B. J.
Offrein
, “
Opportunities for integrated photonic neural networks
,”
Nanophotonics
9
,
4221
(
2020
).
24.
S.
Slussarenko
and
G.
Pryde
, “
Photonic quantum information processing: A concise review
,”
Appl. Phys. Rev.
6
,
041303
(
2019
).
25.
W.
Silverstone
,
D.
Bonneau
,
J. L.
O’Brien
, and
M. G.
Thompson
, “
Silicon quantum photonics
,”
IEEE J. Sel. Top. Quantum Electron.
22
,
390
402
(
2016
).
26.
H.-S.
Zhong
,
H.
Wang
,
Y.-H.
Deng
,
M.-C.
Chen
,
L.-C.
Peng
,
Y.-H.
Luo
,
J.
Qin
,
D.
Wu
,
X.
Ding
,
Y.
Hu
,
P.
Hu
,
X.-Y.
Yang
,
W.-J.
Zhang
,
H.
Li
,
Y.
Li
,
X.
Jiang
,
L.
Gan
,
G.
Yang
,
L.
You
,
Z.
Wang
,
L.
Li
,
N.-L.
Liu
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Quantum computational advantage using photons
,”
Science
370
,
1460
1463
(
2020
).
27.
C. K.
Madsen
and
J. H.
Zhao
,
Optical Filter Design and Analysis: A Signal Processing Approach
(
John Wiley & Sons, Inc.
,
1999
).
28.
L.
Appeltant
,
M. C.
Soriano
,
G. V. D.
Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C. R.
Mirasso
, and
I.
Fischer
, “
Information processing using a single dynamical node as complex system
,”
Nat. Commun.
2
,
468
(
2011
).
29.
J. L.
O'Brien
, “
Optical quantum computing
,”
Science
318
,
1567
(
2007
).
30.
R. C.
Alferness
, “
Waveguide electrooptic modulators
,”
IEEE Trans. Microwave Theory Tech.
30
,
1121
(
1982
).
31.
A.
Rahim
,
A.
Hermans
,
B.
Wohlfeil
,
D.
Petousi
,
B.
Kuyken
,
D.
Van Thourhout
, and
R.
Baets
, “
Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies
,”
Adv. Photonics
3
,
024003
(
2021
).
32.
K.
Simonyan
and
A.
Zisserman
, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556 (
2014
).
33.
C.
Ríos
,
N.
Youngblood
,
Z.
Cheng
,
M.
Le Gallo
,
W. H. P.
Pernice
,
C. D.
Wright
,
A.
Sebastian
, and
H.
Bhaskaran
, “
In-memory computing on a photonic platform
,”
Sci. Adv.
5
,
eaau5759
(
2019
).
34.
D.
Verstraeten
,
B.
Schrauwen
,
M.
D’Haene
, and
D.
Stroobandt
, “
An experimental unification of reservoir computing methods
,”
Neural Netw.
20
,
391
(
2007
).
35.
S.
Mosleh
,
L.
Liu
,
C.
Sahin
,
Y. R.
Zheng
, and
Y.
Yi
, “
Brain-inspired wireless communications: Where reservoir computing meets MIMO-OFDM
,”
IEEE Trans. Neural Netw. Learn. Syst.
29
(
10
),
4694
4708
(
2018
).
36.
A.
Graves
,
D.
Eck
,
N.
Beringer
, and
J.
Schmidhuber
, “
Biologically plausible speech recognition with LSTM neural nets
,” in
Proceedings of BIO-ADIT
(edited by A. J. Ijspeert, M. Murata, and N. Wakamiya (Springer,
2004
), pp.
127
136
.
37.
J.
Suykens
and
J.
Vandewalle
,
Nonlinear Modeling Advanced Black-box Techniques
(
Kluwer Academic Publishers
,
1998
), pp.
29
53
.
38.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
(
2019
).
39.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
,
2531
(
2002
).
40.
H.
Jaeger
, The “echo state” approach to analysing and training recurrent neural networks. Tech. Rep. No. GMD report 148, German National Research Center for Information Technology, 2001.
41.
J. J.
Steil
, “
Backpropagation–decorrelation: Online recurrent learning with O(N) complexity
,”
Proc. IJCNN
1
,
843
848
(
2004
).
42.
W.
Maass
and
C.
Bishop
,
Pulsed Neural Networks
(
Bradford Books
,
Cambridge
,
MA
,
2001
).
43.
J.
Feldmann
,
N.
Youngblood
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H. P.
Pernice
, “
All-optical spiking neurosynaptic networks with self-learning capabilities
,”
Nature
569
,
208
214
(
2019
).
44.
M. A.
Nahmias
,
B. J.
Shastri
,
A. N.
Tait
, and
P. R.
Prucnal
, “
A leaky integrate-and-fire laser neuron for ultrafast cognitive computing
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
1
12
(
2013
).
45.
H. T.
Peng
,
M. A.
Nahmias
,
T. F.
de Lima
,
A. N.
Tait
, and
B. J.
Shastri
, “
Neuromorphic photonic integrated circuits
,”
IEEE J. Sel. Top. Quantum Electron.
24
(
6
),
6101715
(
2018
).
46.
D.
Brunner
,
M. C.
Soriano
,
C. R.
Mirasso
, and
I.
Fischer
, “
Parallel photonic information processing at gigabyte per second data rates using transient states
,”
Nat. Commun.
4
,
1364
(
2013
).
47.
A.
Namajūnas
,
K.
Pyragas
, and
A.
Tamaševičus
, “
An electronic analog of the mackey-glass system
,”
Phys. Lett. A
201
,
42
46
(
1995
).
48.
K. E.
Callen
,
L.
Illing
,
Z.
Gao
,
D. J.
Gauthier
, and
E.
Schöll
, “
Broadband chaos generated by an optoelectronic oscillator
,”
Phys. Rev. Lett.
104
,
113901
(
2010
).
49.
G.
Cauwenberghs
, “
Reverse engineering the cognitive brain
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
15512
(
2013
).
50.
V.
Vapnik
,
The Nature of Statistical Learning Theory
(
Springer-Verlag
,
New York
,
1995
).
51.
I. P.
Kaminow
and
E. H.
Turner
, “
Electrooptic light modulators
,”
Appl. Opt.
5
,
1612
(
1966
).
52.
S. H.
Wemple
and
M.
Didomenico
, Jr.
, “
Electrooptical and nonlinear optical properties of crystals
,”
Appl. Solid Sci.
3
,
263
(
1972
).
53.
M.
Veithen
,
X.
Gonze
, and
P.
Ghosez
, “
Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory
,”
Phys. Rev. B
71
,
125107
(
2005
).
54.
K. D.
Fredrickson
,
V. V.
Vogler-Neuling
,
K. J.
Kormondy
,
D.
Caimi
,
F.
Eltes
,
M.
Sousa
,
J.
Fompeyrine
,
S.
Abel
, and
A. A.
Demkov
, “
Strain enhancement of the electro-optical response in BaTiO3 films integrated on Si (001)
,”
Phys. Rev. B
98
,
075136
(
2018
).
55.
A. K.
Hamze
and
A. A.
Demkov
, “
First-principles study of the linear electro-optical response in strained SrTiO3
,”
Phys. Rev. Mater.
2
,
005200
(
2018
).
56.
C.
Paillard
,
S.
Prokhorenko
, and
L.
Bellaiche
, “
Strain engineering of electro-optic constants in ferroelectric materials
,”
npj Comput. Mater.
5
,
6
(
2019
).
57.
A. K.
Hamze
,
M.
Reynaud
,
J.
Geler-Kremer
, and
A. A.
Demkov
, “
Design rules for strong electro-optic materials
,”
npj Comput. Mater.
6
,
130
(
2020
).
58.
J. F.
Nye
,
Physical Properties of Crystals
(
Oxford University Press
,
Oxford
,
1985
).
59.
D.
Brüske
,
S.
Suntsov
,
C. E.
Rüter
, and
D.
Kip
, “
Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion
,”
Opt. Express
25
,
29374
29379
(
2017
).
60.
S.
Tanzilli
,
H. D.
Riedmatten
,
W.
Tittel
,
H.
Zbinden
,
P.
Baldi
,
M. D.
Micheli
,
D. B.
Ostrowsky
, and
N.
Gisin
, “
Highly efficient photon-pair source using periodically poled lithium niobate waveguide
,”
Electron. Lett.
37
(
1
),
26
28
(
2001
).
61.
Y. S.
Lee
,
G. D.
Kim
,
W. J.
Kim
,
S. S.
Lee
,
W. G.
Lee
, and
W. H.
Steier
, “
Hybrid Si-LiNbO3 microring electrooptically tunable resonators for active photonic devices
,”
Opt. Lett.
36
(
7
),
1119
1121
(
2011
).
62.
P.
Rabiei
,
J.
Ma
,
S.
Khan
,
J.
Chiles
, and
S.
Fathpour
, “
Heterogeneous lithium niobate photnoics on silicon substrates
,”
Opt. Express
21
,
25573
25581
(
2013
).
63.
C.
Wang
,
M.
Zhang
,
X.
Chen
,
M.
Bertrand
,
A.
Shams-Ansari
,
S.
Chandrasekhar
,
P.
Winzer
, and
M.
Lončar
, “
Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
,”
Nature
562
,
101
104
(
2018
).
64.
G.
Poberaj
,
H.
Hu
,
W.
Sohler
, and
P.
Günter
, “
Lithium niobate on insulator (LNOI) for micro-photonic devices
,”
Laser Photonics Rev.
6
,
488
503
(
2012
).
65.
M.
He
,
M.
Xu
,
Y.
Ren
,
J.
Jian
,
Z.
Ruan
,
Y.
Xu
,
S.
Gao
,
S.
Sun
,
X.
Wen
,
L.
Zhou
,
L.
Liu
,
C.
Guo
,
H.
Chen
,
S.
Yu
,
L.
Liu
, and
X.
Cai
, “
High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 gbit s−1 and beyond
,”
Nat. Photonics
13
,
359
(
2019
).
66.
F.
Niu
,
A. R.
Teren
,
B. H.
Hoerman
, and
B. W.
Wessels
, “
Epitaxial ferroelectric BaTiO3 thin films for microphotonic applications
,”
MRS Proc.
637
,
E1.9
(
2000
).
67.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
, “
Crystalline oxides on silicon: The first five monolayers
,”
Phys. Rev. Lett.
81
,
3014
(
1998
).
68.
A. A.
Demkov
and
A. B.
Posadas
,
Integration of Functional Oxides with Semiconductors
(
Springer
,
2014
).
69.
K. D.
Fredrickson
,
H.
Seo
, and
A. A.
Demkov
, “
Mechanism of oxidation protection of the Si (001) surface by sub-monolayer Sr template
,”
J. Appl. Phys.
120
,
065301
(
2016
).
70.
R.
Droopad
,
Z.
Yu
,
H.
Li
,
Y.
Liang
,
C.
Overgaard
,
A. A.
Demkov
,
X.
Zhang
,
K.
Moore
,
K.
Eisenbeiser
,
M.
Hu
,
J.
Curless
, and
J.
Finder
, “
Development of integrated heterostructures on silicon by MBE
,”
J. Cryst. Growth
251
,
638
644
(
2003
).
71.
Y.
Wei
,
X.
Hu
,
Y.
Liang
,
D.
Jordan
,
B.
Craigo
,
R.
Droopad
,
Z.
Yu
,
A. A.
Demkov
,
J.
Edwards
, Jr.
, and
W.
Ooms
, “
Mechanism of cleaning Si (001) surface using Sr or SrO for the growth of crystalline SrTiO3 films
,”
J. Vac. Sci. Technol. B
20
,
1402
(
2002
).
72.
C.
Dubourdieu
,
J.
Bruley
,
T. M.
Arruda
,
A.
Posadas
,
J.
Jordan-Sweet
,
M. M.
Frank
,
E.
Cartier
,
D. J.
Frank
,
S. V.
Kalinin
,
A. A.
Demkov
, and
V.
Narayanan
, “
Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode
,”
Nat. Nanotechnol.
8
,
748
754
(
2013
).
73.
S.
Abel
,
T.
Stöferle
,
C.
Marchiori
,
C.
Rossel
,
M. D.
Rossell
,
R.
Erni
,
D.
Caimi
,
M.
Sousa
,
A.
Chelnokov
,
B. J.
Offrein
, and
J.
Fompeyrine
, “
A strong electro-optically active lead-free ferroelectric integrated on silicon
,”
Nat. Commun.
4
,
1671
(
2013
).
74.
S.
Abel
,
T.
Stoferle
,
C.
Marchiori
,
D.
Caimi
,
L.
Czornomaz
,
M.
Stuckelberger
,
M.
Sousa
,
B. J.
Offrein
, and
J.
Fompeyrine
, “
A hybrid barium titanate–silicon photonics platform for ultraefficient electro-optic tuning
,”
J. Lightwave Technol.
34
,
1688
(
2016
).
75.
C.
Xiong
,
W. H. P.
Pernice
,
J. H.
Ngai
,
J. W.
Reiner
,
D.
Kumah
,
F. J.
Walker
,
C. H.
Ahn
, and
H. X.
Tang
, “
Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices
,”
Nano Lett.
14
,
1419
1425
(
2014
).
76.
F.
Eltes
,
D.
Caimi
,
F.
Fallegger
,
M.
Sousa
,
E.
O’Connor
,
M. D.
Rossell
,
B.
Offrein
,
J.
Fompeyrine
, and
S.
Abel
, “
Low-Loss BaTiO3−Si waveguides for nonlinear integrated photonics
,”
ACS Photonics
3
,
1698
(
2016
).
77.
A.
Rosa
,
D.
Tulli
,
P.
Castera
,
A. M.
Gutierrez
,
A.
Griol
,
M.
Baquero
,
B.
Vilquin
,
F.
Eltes
,
S.
Abel
,
J.
Fompeyrine
, and
P.
Sanchis
, “
Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators
,”
Opt. Mater. Express
7
,
12
(
2017
).
78.
S.
Abel
,
F.
Eltes
,
J. E.
Ortmann
,
A.
Messner
,
P.
Castera
,
T.
Wagner
,
D.
Urbonas
,
A.
Rosa
,
A. M.
Gutierrez
,
D.
Tulli
,
P.
Ma
,
B.
Baeuerle
,
A.
Josten
,
W.
Heni
,
D.
Caimi
,
L.
Czornomaz
,
A. A.
Demkov
,
J.
Leuthold
,
P.
Sanchis
, and
J.
Fompeyrine
, “
Large pockels effect in micro- and nano-structured barium titanate integrated on silicon
,”
Nat. Mater.
18
,
42
(
2019
).
79.
J. E.
Ortmann
,
F.
Eltes
,
D.
Caimi
,
N.
Meier
,
A. A.
Demkov
,
L.
Czornomaz
,
J.
Fompeyrine
, and
S.
Abel
, “
Ultra-low-power tuning in hybrid barium titanate–silicon nitride electro-optic devices on silicon
,”
ACS Photonics
6
,
2677
2684
(
2019
).
80.
F.
Eltes
,
G. E.
Villarreal-Garcia
,
D.
Caimi
,
H.
Siegwart
,
A. A.
Gentile
,
A.
Hart
,
P.
Stark
,
G. D.
Marshall
,
M. G.
Thompson
,
J.
Barreto
,
J.
Fompeyrine
, and
S.
Abel
, “
An integrated optical modulator operating at cryogenic temperatures
,”
Nat. Mat.
19
,
1164
(
2020
).
81.
T. Q.
Ngo
,
A. B.
Posadas
,
M. D.
McDaniel
,
C.
Hu
,
J.
Bruley
,
E. T.
Yu
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Epitaxial c-axis oriented BaTiO3 thin films on SrTiO3-buffered Si (001) by atomic layer deposition
,”
Appl. Phys. Lett.
104
,
082910
(
2014
).
82.
E. L.
Lin
,
A. B.
Posadas
,
L.
Zheng
,
J. E.
Ortmann
,
S.
Abel
,
J.
Fompeyrine
,
K.
Lai
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Atomic layer deposition of epitaxial ferroelectric barium titanate on Si (001) for electronic and photonic applications
,”
J. Appl. Phys.
126
,
064101
(
2019
).
83.
E. L.
Lin
,
A. B.
Posadas
,
L.
Zheng
,
H. W.
Wu
,
P.-Y.
Chen
,
B. M.
Coffey
,
K.
Lai
,
A. A.
Demkov
,
D. J.
Smith
, and
J. G.
Ekerdt
, “
Epitaxial integration of ferroelectric and conductive perovskites on silicon
,”
J. Vac. Sci. Technol. A
38
,
022403
(
2020
).
84.
M.-B.
Lee
,
M.
Kawasaki
,
M.
Yoshimoto
, and
H.
Koinuma
, “
Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition
,”
Appl. Phys. Lett.
66
,
1331
(
1995
).
85.
G.
Niu
,
S.
Yin
,
G.
Saint-Girons
,
B.
Gautier
,
P.
Lecoeur
,
V.
Pillard
,
G.
Hollinger
, and
B.
Vilquin
, “
Epitaxy of BaTiO3 thin film on Si (001) using a SrTiO3 buffer layer for non-volatile memory application
,”
Microelectron. Eng.
88
,
1232
1235
(
2011
).
86.
K.
Park
,
S.
Xu
,
Y.
Liu
,
G.-T.
Hwang
,
S.-J.
Kang
,
Z. L.
Wang
, and
K. J.
Lee
, “
Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates
,”
Nano Lett.
10
,
12
(
2010
).
87.
W.
Cai
,
C.
Fu
,
J.
Gao
,
Q.
Guo
,
X.
Deng
, and
C.
Zhang
, “
Preparation and optical properties of barium titanate thin films
,”
Physica B
406
,
3588
3587
(
2011
).
88.
B. I.
Edmondson
,
S.
Kwon
,
C. H.
Lam
,
J. E.
Ortmann
,
A. A.
Demkov
,
M. J.
Kim
, and
J. G.
Ekerdt
, “
Epitaxial, electro-optically active barium titanate thin films on silicon by chemical solution deposition
,”
J. Am. Ceram. Soc.
103
,
1209
1218
(
2020
).
89.
B. I.
Edmondson
,
S.
Kwon
,
J. E.
Ortmann
,
A. A.
Demkov
,
M. J.
Kim
, and
J. G.
Ekerdt
, “
Composition and annealing effects on the linear electro-optic response of solution-deposited strontium titanate
,”
J. Am. Ceram. Soc.
103
,
5700
5705
(
2020
).
90.
B. S.
Kwak
,
K.
Zhang
,
E. P.
Boyd
,
A.
Erbil
, and
B. J.
Wilkens
, “
Metalorganic chemical vapor deposition of BaTiO3 thin films
,”
J. Appl. Phys.
69
,
767
772
(
1991
).
91.
K. J.
Kormondy
,
Y.
Popoff
,
M.
Sousa
,
F.
Eltes
,
D.
Caimi
,
M. D.
Rossell
,
M.
Fiebig
,
P.
Hoffmann
,
C.
Marchiori
,
M.
Reinke
,
M.
Trassin
,
A. A.
Demkov
,
J.
Fompeyrine
, and
S.
Abel
, “
Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics
,”
Nanotechnology
28
,
075706
(
2017
).
92.
Y.
Zhang
,
J. B.
Chou
,
J.
Li
,
H.
Li
,
Q.
Du
,
A.
Yadav
,
S.
Zhou
,
M. Y.
Shalaginov
,
Z.
Fang
,
H.
Zhong
,
C.
Roberts
,
P.
Robinson
,
B.
Bohlin
,
C.
Ríos
,
H.
Lin
,
M.
Kang
,
T.
Gu
,
J.
Warner
,
V.
Liberman
,
K.
Richardson
, and
J.
Hu
, “
Broadband transparent optical phase change materials for high-performance nonvolatile photonics
,”
Nat. Commun.
10
,
4279
(
2019
).
93.
B. M.
Coffey
,
E. L.
Lin
,
P.-Y.
Chen
, and
J. G.
Ekerdt
, “
Area-selective atomic layer deposition of crystalline BaTiO3
,”
Chem. Mater.
31
,
5558
5565
(
2019
).
94.
P.
Ponath
,
A. B.
Posadas
,
M.
Schmidt
,
A.-M.
Kelleher
,
M.
White
,
D.
O’Connell
,
P.
Hurley
,
R.
Duffy
, and
A. A.
Demkov
, “
Monolithic integration of patterned BaTiO3 thin films on Ge wafers
,”
J. Vac. Sci. Technol. B
36
,
031206
(
2018
).
95.
J. E.
Ortmann
,
M. R.
McCartney
,
A. B.
Posadas
,
D. J.
Smith
, and
A. A.
Demkov
, “
Epitaxial oxides on glass: A platform for integrated oxide devices
,”
ACS Appl. Nano Mater.
2
,
7713
7718
(
2019
).
96.
W.
Guo
,
A. B.
Posadas
, and
A. A.
Demkov
, “
Deal-grove-like thermal oxidation of Si (001) buried under a thin layer of SrTiO3
,”
J. Appl. Phys.
127
,
055302
(
2020
).
97.
J. E.
Ortmann
,
A. Y.
Borisevich
,
S.
Kwon
,
A. B.
Posadas
,
M. J.
Kim
, and
A. A.
Demkov
, “
Three-dimensional integration of functional oxides and crystalline silicon for optical neuromorphic computing using nanometer-scale oxygen scavenging barriers
,”
ACS Appl. Nano Mater.
4
(
2
),
2153
2159
(
2021
).
98.
D. O.
Klenov
,
D. G.
Schlom
,
H.
Li
, and
S.
Stemmer
, “
The interface between single crystalline (001) LaAlO3 and (001) silicon
,”
Jpn. J. Appl. Phys.
44
,
L617
(
2005
).
99.
M. L.
Davenport
,
M. A.
Tran
,
T.
Komljenovic
, and
J. E.
Bowers
, “
Heterogeneous integration of III-V lasers on Si by bonding
,” in
Silicon Photonics; Semiconductors and Semimetals
, edited by
S.
Lourdudoss
,
R. T.
Chen
, and
C.
Jagadish
(
Elsevier
,
San Diego
,
2018
), Vol.
99
, p.
139
.
100.
C.
Xiang
,
W. R.
Jin
,
J.
Guo
,
J. D.
Peters
,
M. J.
Kennedy
,
J.
Selvidge
,
P. A.
Morton
, and
J. E.
Bowers
, “
Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration
,”
Optica
7
,
20
(
2020
).
101.
S. M.
Chen
,
W.
Li
,
J.
Wu
,
Q.
Jiang
,
M. C.
Tang
,
S.
Shutts
,
S. N.
Elliott
,
A.
Sobiesierski
,
A. J.
Seeds
,
I.
Ross
,
P. M.
Smowton
, and
H. Y.
Liu
, “
Electrically pumped continuous-wave III-V quantum dot lasers on silicon
,”
Nat. Photonics
10
,
307
(
2016
).
102.
A. Y.
Liu
,
J.
Peters
,
X.
Huang
,
D.
Jung
,
J.
Norman
,
M. L.
Lee
,
A. C.
Gossard
, and
J. E.
Bowers
, “
Electrically pumped continuous-wave 1.3 mu m quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si
,”
Opt. Lett.
42
,
338
(
2017
).
103.
J.
Norman
,
M. J.
Kennedy
,
J.
Selvidge
,
Q.
Li
,
Y. T.
Wan
,
A. Y.
Liu
,
P. G.
Callahan
,
M. P.
Echlin
,
T. M.
Pollock
,
K. M.
Lau
,
A. C.
Gossard
, and
J. E.
Bowers
, “
Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si
,”
Opt. Express
25
,
3927
(
2017
).
104.
A. Y.
Liu
and
J.
Bowers
, “
Photonic integration with epitaxial III-V on silicon
,”
IEEE J. Sel. Top. Quantum Electron.
24
(
6
),
6000412
(
2018
).
105.
B.
Shi
and
K. M.
Lau
, “
Growth of III-V semiconductors and lasers on silicon substrates by MOCVD
,” in
Future Directions in Silicon Photonics; Semiconductors and Semimetals
, edited by
S.
Lourdudoss
,
J. E.
Bowers
, and
C.
Jagadish
(
Elsevier
,
San Diego
,
2019
), Vol.
101
, p.
229
.
106.
S.
Naritsuka
, “
Microchannel epitaxy of III-V layers on Si substrates
,” in
Future Directions in Silicon Photonics; Semiconductors and Semimetals
, edited by
S.
Lourdudoss
,
J. E.
Bowers
, and
C.
Jagadish
(
Elsevier
,
San Diego
,
2019
), Vol.
101
, p.
139
.
107.
D.
Van Thourhout
,
Y. T.
Shi
,
M.
Baryshnikova
,
Y.
Mols
,
N.
Kuznetsova
,
Y.
De Koninck
,
M.
Pantouvaki
,
J.
Van Campenhout
,
R.
Langer
, and
B.
Kunert
, “
Nano-ridge laser monolithically grown on (001) Si
,” in
Future Directions in Silicon Photonics; Semiconductors and Semimetals
, edited by
S.
Lourdudoss
,
J. E.
Bowers
, and
C.
Jagadish
(
Elsevier
,
San Diego
,
2019
), Vol.
101
, p.
283
.
108.
R. D.
Bringans
,
D. K.
Biegelsen
, and
L.-E.
Swartz
, “
Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy
,”
Phys. Rev. B
44
,
3054
(
1991
).
109.
K.
Volz
,
A.
Beyer
,
W.
Witte
,
J.
Ohlmann
,
I.
Németh
,
B.
Kunert
, and
W.
Stolz
, “
GaP-nucleation on exact Si (001) substrates for III/V device integration
,”
J. Cryst. Growth
315
,
37
(
2011
).
110.
R.
Alcotte
,
M.
Martin
,
J.
Moeyaert
,
R.
Cipro
,
S.
David
,
F.
Bassani
,
F.
Ducroquet
,
Y.
Bogumilowicz
,
E.
Sanchez
,
Z.
Ye
,
X. Y.
Bao
,
J. B.
Pin
, and
T.
Baron
, “
Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility
,”
APL Mater.
4
,
046101
(
2016
).
111.
S. M.
Chen
,
M. Y.
Liao
,
M. C.
Tang
,
J.
Wu
,
M.
Martin
,
T.
Baron
,
A.
Seeds
, and
H. Y.
Liu
, “
Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates
,”
Opt. Express
25
,
4632
(
2017
).
112.
Y. T.
Wan
,
C.
Shang
,
J.
Norman
,
B.
Shi
,
Q.
Li
,
N.
Collins
,
M.
Dumont
,
K. M.
Lau
,
A. C.
Gossard
, and
J. E.
Bowers
, “
Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si
,”
IEEE J. Sel. Top. Quantum Electron.
26
(
2
),
19004099
(
2020
).
113.
J. C.
Norman
,
D.
Jung
,
Y. T.
Wan
, and
J. E.
Bowers
, “
Perspective: The future of quantum dot photonic integrated circuits
,”
APL Phontonics
3
,
030901
(
2018
).
114.
Z. Z.
Liu
,
M.
Martin
,
T.
Baron
,
S. M.
Chen
,
A.
Seeds
,
R.
Penty
,
I.
White
,
H. Y.
Liu
,
C.
Hantschmann
,
M. C.
Tang
,
Y.
Lu
,
J. S.
Park
,
M. Y.
Liao
,
S. J.
Pan
,
A.
Sanchez
, and
R.
Beanland
, “
Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon
,”
J. Lightwave Technol.
38
,
240
(
2020
).
115.
M.
Yamaguchi
,
A.
Yamamoto
,
M.
Tachikawa
,
Y.
Itoh
, and
M.
Sugo
, “
Defect reduction effects in GaAs on Si substrates by thermal annealing
,”
Appl. Phys. Lett.
53
,
2293
(
1988
).
116.
S. M.
Ting
and
E. A.
Fitzgerald
, “
Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates
,”
J. Appl. Phys.
87
,
2618
(
2000
).
117.
S. M.
Chen
,
M. C.
Tang
,
J.
Wu
,
Q.
Jiang
,
V. G.
Dorogan
,
M.
Benamara
,
Y. I.
Mazur
,
G. J.
Salamo
,
A. J.
Seeds
, and
H.
Liu
, “
1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C
,”
Electron. Lett.
50
,
1467
(
2014
).
118.
J. Z.
Li
,
J.
Bai
,
J. S.
Park
,
B.
Adekore
,
K.
Fox
,
M.
Carroll
,
A.
Lochtefeld
, and
Z.
Shellenbarger
, “
Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping
,”
Appl. Phys. Lett.
91
,
021114
(
2007
).
119.
J. Z.
Li
,
J.
Bai
,
C.
Major
,
M.
Carroll
,
A.
Lochtefeld
, and
Z.
Shellenbarger
, “
Defect reduction of GaAs/Si epitaxy by aspect ratio trapping
,”
J. Appl. Phys.
103
,
106102
(
2008
).
120.
C.
Merckling
,
N.
Waldron
,
S.
Jiang
,
W.
Guo
,
N.
Collaert
,
M.
Caymax
,
E.
Vancoille
,
K.
Barla
,
A.
Thean
,
M.
Heyns
, and
W.
Vandervorst
, “
Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering
,”
J. Appl. Phys.
115
,
023710
(
2014
).
121.
W.
Guo
,
L.
Date
,
V.
Pena
,
X.
Bao
,
C.
Merckling
,
N.
Waldron
,
N.
Collaert
,
M.
Caymax
,
E.
Sanchez
,
E.
Vancoille
,
K.
Barla
,
A.
Thean
,
P.
Eyben
, and
W.
Vandervorst
, “
Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001)
,”
Appl. Phys. Lett.
105
,
062101
(
2014
).
122.
Q.
Li
,
K. W.
Ng
, and
K. M.
Lau
, “
Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon
,”
Appl. Phys. Lett.
106
,
072105
(
2015
).
123.
D.
Jung
,
J.
Norman
,
Y. T.
Wan
,
S. T.
Liu
,
R.
Herrick
,
J.
Selvidge
,
K.
Mukherjee
,
A. C.
Gossard
, and
J. E.
Bowers
, “
Recent advances in InAs quantum dot lasers grown on on-axis (001) silicon by molecular beam epitaxy
,”
Phys. Status Solidi A
216
,
1800602
(
2019
).
124.
J.
Selvidge
,
J.
Norman
,
E. T.
Hughes
,
C.
Shang
,
D.
Jung
,
A. A.
Taylor
,
M. J.
Kennedy
,
R.
Herrick
,
J. E.
Bowers
, and
K.
Mukherjee
, “
Defect filtering for thermal expansion induced dislocations in III-V lasers on silicon
,”
Appl. Phys. Lett.
117
,
122101
(
2020
).
125.
C.
Shang
,
J.
Selvidge
,
E.
Hughes
,
J. C.
Norman
,
A. A.
Taylor
,
A. C.
Gossard
,
K.
Mukherjee
, and
J. E.
Bowers
, “
A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density
,”
Phys. Status Solidi A
218
,
2000402
(
2021
).
126.
S.
Hasan
,
H.
Han
,
M.
Korytov
,
M.
Pantouvaki
,
J.
Van Campenhout
,
C.
Merckling
, and
W.
Vandervorst
, “
InAlGaAs encapsulation of MOVPE-grown InAs quantum dots on InP(001) substrate
,”
J. Cryst. Growth
531
,
125342
(
2020
).
127.
S.
Hasan
,
O.
Richard
,
C.
Merckling
, and
W.
Vandervorst
, “
Encapsulation study of MOVPE grown InAs QDs by InP towards 1550 nm emission
,”
J. Cryst. Growth
557
,
126010
(
2021
).
128.
S.
Zhu
,
B.
Shi
,
Q.
Li
, and
K. M.
Lau
, “
1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon
,”
Appl. Phys. Lett.
113
,
221103
(
2018
).
129.
S.
Zhu
,
B.
Shi
,
Q.
Li
, and
K. M.
Lau
, “
Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si
,”
Opt. Express
26
,
14514
(
2018
).
130.
B.
Shi
,
A.
Goswami
,
A. A.
Taylor
,
S. T. S.
Brunelli
,
C.
Palmstrøm
, and
J.
Klamkin
, “
Antiphase boundary free InP microridges on (001) silicon by selective area heteroepitaxy
,”
Cryst. Growth Des.
20
,
7761
(
2020
).
131.
Y. T.
Shi
,
Z. C.
Wang
,
J.
Van Campenhout
,
M.
Pantouvaki
,
W. M.
Guo
,
B.
Kunert
, and
D.
Van Thourhout
, “
Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer
,”
Optica
4
,
1468
(
2017
).
132.
Y. T.
Shi
,
L. C.
Kreuzer
,
N. C.
Gerhardt
,
M.
Pantouvaki
,
J.
Van Campenhout
,
M.
Baryshnikova
,
R.
Langer
,
D.
Van Thourhout
, and
B.
Kunert
, “
Time-resolved photoluminescence characterization of InGaAs/GaAs nano-ridges monolithically grown on 300 mm Si substrates
,”
J. Appl. Phys.
127
,
103104
(
2020
).
133.
Y.
Han
,
Y.
Xue
,
Z.
Yan
, and
K. M.
Lau
, “
Selectively grown III-V lasers for integrated Si-photonics
,”
J. Lightwave Technol.
39
,
940
(
2021
).
You do not currently have access to this content.