Photothermal therapy (PTT) is an extensively used kind of cancer treatment based on thermal energy, which has been technically mature relative to other emerging nanotechnologies. Initially, single-phase magnetic nanoparticles (NPs) have been used for PTT due to their excellent biocompatibility and photothermal properties. With the boom of research, various types of composite-phase NPs have been developed to improve the efficiency and broaden the application range of PTT. The synergistic effect of PTT and other therapies have also gradually attracted the attention of researchers in achieving enhanced tumor elimination. However, the intrinsic obstacles of PTT have restricted the widespread clinical application, and the vague pathological mechanisms of PTT have also made it more difficult to promote clinical translation. In this Perspective, the current research progress of PTT including a diversified selection of magnetic NPs prospects toward the clinic, and the potential pathological mechanism will be overviewed. Meanwhile, the potential outlook of open challenges will be discussed for the utility of PTT.

1.
C. W.
Hsiao
,
E. Y.
Chuang
,
H. L.
Chen
,
D. H.
Wan
,
C.
Korupalli
,
Z. X.
Liao
,
Y. L.
Chiu
,
W. T.
Chia
,
K. J.
Lin
, and
H. W.
Sung
, “
Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ
,”
Biomaterials
56
,
26
(
2015
).
2.
Q.
Chen
,
L. G.
Xu
,
C.
Liang
,
C.
Wang
,
R.
Peng
, and
Z.
Liu
, “
Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
,”
Nat. Commun.
7
,
13193
(
2016
).
3.
M.
Saeed
,
W. Z.
Ren
, and
A. G.
Wu
, “
Therapeutic applications of iron oxide based nanoparticles in cancer: Basic concepts and recent advances
,”
Biomater. Sci.
6
(
4
),
708
(
2018
).
4.
F.
Ding
,
X. H.
Gao
,
X. G.
Huang
,
H.
Ge
,
M.
Xie
,
J. W.
Qian
,
J.
Song
,
Y. H.
Li
,
X. Y.
Zhu
, and
C.
Zhang
, “
Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy
,”
Biomaterials
245
,
119976
(
2020
).
5.
K. Y.
Wang
,
Y. A.
Xiang
,
W.
Pan
,
H. Y.
Wang
,
N.
Li
, and
B.
Tang
, “
Dual-targeted photothermal agents for enhanced cancer therapy
,”
Chem. Sci.
11
(
31
),
8055
(
2020
).
6.
S.
Anand
,
T. A.
Chan
,
T.
Hasan
, and
E. V.
Maytin
, “
Current prospects for treatment of solid tumors via photodynamic, photothermal, or ionizing radiation therapies combined with immune checkpoint inhibition (a review)
,”
Pharmaceuticals
14
(
5
),
447
(
2021
).
7.
Y. Y.
Hu
,
C. W.
Chi
,
S. H.
Wang
,
L. X.
Wang
,
P.
Liang
,
F. Y.
Liu
,
W. T.
Shang
,
W. W.
Wang
,
F. R.
Zhang
,
S. S.
Li
 et al, “
A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer
,”
Adv. Mater.
29
(
33
),
1700448
(
2017
).
8.
Y. J.
Liu
,
P.
Bhattarai
,
Z. F.
Dai
, and
X. Y.
Chen
, “
Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer
,”
Chem. Soc. Rev.
48
(
7
),
2053
(
2019
).
9.
C.
Xu
and
K. Y.
Pu
, “
Second near-infrared photothermal materials for combinational nanotheranostics
,”
Chem. Soc. Rev.
50
(
2
),
1111
(
2021
).
10.
J. R.
Melamed
,
R. S.
Edelstein
, and
E. S.
Day
, “
Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy
,”
ACS Nano
9
(
1
),
6
(
2015
).
11.
J. X.
Wang
,
C. J.
Yao
,
B.
Shen
,
X. H.
Zhu
,
Y.
Li
,
L. Y.
Shi
,
Y.
Zhang
,
J. L.
Liu
,
Y. L.
Wang
, and
L. N.
Sun
, “
Upconversion-magnetic carbon sphere for near infrared light-triggered bioimaging and photothermal therapy
,”
Theranostics
9
(
2
),
608
(
2019
).
12.
M. Y.
Chang
,
Z. Y.
Hou
,
M.
Wang
,
C. X.
Li
, and
J.
Lin
, “
Recent advances in hyperthermia therapy-based synergistic immunotherapy
,”
Adv. Mater.
33
(
4
),
2004788
(
2021
).
13.
S. R.
Wang
,
Z. L.
Sun
, and
Y. L.
Hou
, “
Engineering nanoparticles toward the modulation of emerging cancer immunotherapy
,”
Adv. Healthcare Mater.
10
,
2000847
(
2020
)
14.
S.
Shen
,
B.
Ding
,
S. C.
Zhang
,
X. Y.
Qi
,
K.
Wang
,
J.
Tian
,
Y. S.
Yan
,
Y. R.
Ge
, and
L.
Wu
, “
Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor
,”
Nanomedicine
13
(
5
),
1607
(
2017
).
15.
J. X.
Liu
,
H. D.
Chen
,
Y.
Fu
,
X. D.
Li
,
Y. X.
Chen
,
H. M.
Zhang
, and
Z. X.
Wang
, “
Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement
,”
J. Mater. Chem. B
5
(
43
),
8554
(
2017
).
16.
S.
Rajkumar
and
M.
Prabaharan
, “
Theranostics based on iron oxide and gold nanoparticles for imaging-guided photothermal and photodynamic therapy of cancer
,”
Curr. Top. Med. Chem.
17
(
16
),
1858
(
2017
).
17.
G.
Liu
,
J. H.
Gao
,
H.
Ai
, and
X. Y.
Chen
, “
Applications and potential toxicity of magnetic iron oxide nanoparticles
,”
Small
9
(
9-10
),
1533
(
2013
).
18.
I.
Brigger
,
C.
Dubernet
, and
P.
Couvreur
, “
Nanoparticles in cancer therapy and diagnosis
,”
Adv. Drug Delivery Rev.
64
,
24
(
2012
).
19.
S.
Shen
,
S.
Wang
,
R.
Zheng
,
X. Y.
Zhu
,
X. G.
Jiang
,
D. L.
Fu
, and
W. L.
Yang
, “
Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation
,”
Biomaterials
39
,
67
(
2015
).
20.
W.
Jiang
,
B. Y. S.
Kim
,
J. T.
Rutka
, and
W. C. W.
Chan
, “
Nanoparticle-mediated cellular response is size-dependent
,”
Nat. Nanotechnol.
3
(
3
),
145
(
2008
).
21.
A.
Kunzmann
,
B.
Andersson
,
C.
Vogt
,
N.
Feliu
,
F.
Ye
,
S.
Gabrielsson
,
M. S.
Toprak
,
T.
Buerki-Thurnherr
,
S.
Laurent
,
M.
Vahter
 et al, “
Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells
,”
Toxicol. Appl. Pharmacol.
253
(
2
),
81
(
2011
).
22.
C.
Yang
,
H. B.
Zhao
,
Y. L.
Hou
, and
D.
Ma
, “
Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis
,”
J. Am. Chem. Soc.
134
(
38
),
15814
(
2012
).
23.
Z. Y.
Yang
,
T. S.
Zhao
,
X. X.
Huang
,
X.
Chu
,
T. Y.
Tang
,
Y. M.
Ju
,
Q.
Wang
,
Y. L.
Hou
, and
S.
Gao
, “
Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions
,”
Chem. Sci.
8
(
1
),
473
(
2017
).
24.
J.
Yu
,
C.
Yang
,
J. D. S.
Li
,
Y. C.
Ding
,
L.
Zhang
,
M. Z.
Yousaf
,
J.
Lin
,
R.
Pang
,
L. B.
Wei
,
L. L.
Xu
 et al, “
Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy
,”
Adv. Mater.
26
(
24
),
4114
(
2014
).
25.
J. C.
Yang
,
Y.
Chen
,
Y. H.
Li
, and
X. B.
Yin
, “
Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release
,”
ACS Appl. Mater. Interfaces
9
(
27
),
22278
(
2017
).
26.
X. L.
Yu
,
A.
Shavel
,
X. Q.
An
,
Z. S.
Luo
,
M.
Ibanez
, and
A.
Cabot
, “
Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation
,”
J. Am. Chem. Soc.
136
(
26
),
9236
(
2014
).
27.
J.
Kim
,
Y.
Piao
, and
T.
Hyeon
, “
Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy
,”
Chem. Soc. Rev.
38
(
2
),
372
(
2009
).
28.
J. S.
Choi
,
Y. W.
Jun
,
S. I.
Yeon
,
H. C.
Kim
,
J. S.
Shin
, and
J.
Cheon
, “
Biocompatible heterostructured nanoparticles for multimodal biological detection
,”
J. Am. Chem. Soc.
128
(
50
),
15982
(
2006
).
29.
C.
Xu
,
J.
Xie
,
D.
Ho
,
C.
Wang
,
N.
Kohler
,
E. G.
Walsh
,
J. R.
Morgan
,
Y. E.
Chin
, and
S.
Suno
, “
Au-Fe3O4 dumbbell nanoparticles as dual-functional probes
,”
Angew. Chem. Int. Ed.
47
(
1
),
173
(
2008
).
30.
J.
McCarthy
and
R.
Weissleder
, “
Multifunctional magnetic nanoparticles for targeted imaging and therapy
,”
Adv. Drug Delivery Rev.
60
(
11
),
1241
(
2008
).
31.
Y. M.
Ju
,
H. L.
Zhang
,
J.
Yu
,
S. Y.
Tong
,
N.
Tian
,
Z. Y.
Wang
,
X. B.
Wang
,
X. T.
Su
,
X.
Chu
,
J.
Lin
 et al, “
Monodisperse Au-Fe2C janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy
,”
ACS Nano
11
(
9
),
9239
(
2017
).
32.
Z.
Wang
,
Y.
Ju
,
Z.
Ali
,
H.
Yin
,
F.
Sheng
,
J.
Lin
,
B.
Wang
, and
Y.
Hou
, “
Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics
,”
Nat. Commun.
10
(
1
),
4418
(
2019
).
33.
Z. Y.
Wang
,
Z. Y.
Li
,
Z. L.
Sun
,
S. R.
Wang
,
Z.
Ali
,
S. H.
Zhu
,
S.
Liu
,
Q. S.
Ren
,
F. G.
Sheng
,
B. D.
Wang
 et al, “
Visualization nanozyme based on tumor microenvironment ‘unlocking’ for intensive combination therapy of breast cancer
,”
Sci. Adv.
6
(
48
),
eabc8733
(
2020
).
34.
G.
Hansen
and
A.
Sundset
, “
Transbronchial laser ablation of benign and malignant tumors
,”
Minim. Invasive Ther. Allied Technol.
15
(
1
),
4
(
2006
).
35.
A. L.
Gough-Palmer
and
W. M. W.
Gedroyc
, “
Laser ablation of hepatocellular carcinoma—A review
,”
World J. Gastroenterol.
14
(
47
),
7170
(
2008
).
36.
H.
Wenger
,
A.
Yousuf
,
A.
Oto
, and
S.
Eggener
, “
Laser ablation as focal therapy for prostate cancer
,”
Curr. Opin. Urol.
24
(
3
),
236
(
2014
).
37.
T. J.
Vogl
,
R.
Straub
,
K.
Eichler
,
O.
Sollner
, and
M. G.
Mack
, “
Colorectal carcinoma metastases in liver: Laser-induced interstitial thermotherapy—local tumor control rate and survival data
,”
Radiology
230
(
2
),
450
(
2004
).
38.
T. J.
Vogl
,
R.
Straub
,
K.
Eichler
,
D.
Woitaschek
, and
M. G.
Mack
, “
Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: Experience with complications in 899 patients (2,520 lesions)
,”
Radiology
225
(
2
),
367
(
2002
).
39.
V.
Arienti
,
S.
Pretolani
,
C. M.
Pacella
,
F.
Magnolfi
,
B.
Caspani
,
G.
Francica
,
A. S.
Megna
,
R.
Regine
,
M.
Sponza
,
E.
Antico
 et al, “
Complications of laser ablation for hepatocellular carcinoma: A multicenter study
,”
Radiology
246
(
3
),
947
(
2008
).
40.
E.
Belykh
,
K.
Yagmurlu
,
N. L.
Martirosyan
,
T.
Lei
,
M.
Izadyyazdanabadi
,
K. M.
Malik
,
V. A.
Byvaltsev
,
P.
Nakaji
, and
M. C.
Preul
, “
Laser application in neurosurgery
,”
Surg. Neurol. Int.
8
,
274
(
2017
).
41.
C.
Lagman
,
L. K.
Chung
,
P. E.
Pelargos
,
N.
Ung
,
T. T.
Bui
,
S. J.
Lee
,
B. L.
Voth
, and
I.
Yang
, “
Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies
,”
J. Clin. Neurosci.
36
,
20
(
2017
).
42.
O.
Bozinov
,
Y.
Yang
,
M. F.
Oertel
,
M. C.
Neidert
, and
P.
Nakaji
, “
Laser interstitial thermal therapy in gliomas
,”
Cancer Lett.
474
,
151
(
2020
).
43.
B.
Schwartzberg
,
J.
Lewin
,
O.
Abdelatif
,
J.
Bernard
,
H.
Bu-Ali
,
S.
Cawthorn
,
M.
Chen-Seetoo
,
S.
Feldman
,
S.
Govindarajulu
,
L.
Jones
 et al, “
Phase 2 open-label trial investigating percutaneous laser ablation for treatment of early-stage breast cancer: MRI, pathology, and outcome correlations
,”
Ann. Surg. Oncol.
25
(
10
),
2958
(
2018
).
44.
A. R.
Rastinehad
,
H.
Anastos
,
E.
Wajswol
,
J. S.
Winoker
,
J. P.
Sfakianos
,
S. K.
Doppalapudi
,
M. R.
Carrick
,
C. J.
Knauer
,
B.
Taouli
,
S. C.
Lewis
 et al, “
Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
37
),
18590
(
2019
).
45.
Z. M.
Guo
,
Y.
Liu
,
X.
Cheng
,
D.
Wang
,
S. B.
Guo
,
M. L.
Jia
,
K.
Ma
,
C. H.
Cui
,
L.
Wang
, and
H.
Zhou
, “
Versatile biomimetic cantharidin-tellurium nanoparticles enhance photothermal therapy by inhibiting the heat shock response for combined tumor therapy
,”
Acta Biomater.
110
,
208
(
2020
).
46.
Y.
Li
,
X. S.
Li
,
A.
Doughty
,
C.
West
,
L.
Wang
,
F. F.
Zhou
,
R. E.
Nordquist
, and
W. R.
Chen
, “
Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer
,”
Nanomedicine
18
,
44
(
2019
).
47.
K.
Domvri
,
S.
Petanidis
,
D.
Anestakis
,
K.
Porpodis
,
C.
Bai
,
P.
Zarogoulidis
,
L.
Freitag
,
W.
Hohenforst-Schmidt
, and
T.
Katopodi
, “
Dual photothermal MDSCs-targeted immunotherapy inhibits lung immunosuppressive metastasis by enhancing T-cell recruitment
,”
Nanoscale
12
(
13
),
7051
(
2020
).
48.
Y. J.
Hou
,
X. X.
Yang
,
R. Q.
Liu
,
D.
Zhao
,
C. X.
Guo
,
A. C.
Zhu
,
M. N.
Wen
,
Z.
Liu
,
G. F.
Qu
, and
H. X.
Meng
, “
Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles
,”
Int. J. Nanomed.
15
,
6827
(
2020
).
49.
M.
Khafaji
,
M.
Zamani
,
M.
Golizadeh
, and
O.
Bavi
, “
Inorganic nanomaterials for chemo/photothermal therapy: A promising horizon on effective cancer treatment
,”
Biophys. Rev.
11
(
3
),
335
(
2019
).
50.
J.
Fang
,
H.
Nakamura
, and
H.
Maeda
, “
The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
,”
Adv. Drug Delivery Rev.
63
(
3
),
136
(
2011
).
51.
J.
Conde
,
N.
Oliva
,
Y.
Zhang
, and
N.
Artzi
, “
Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model
,”
Nat. Mater.
15
(
10
),
1128
(
2016
).
52.
X.
Li
,
C. Y.
Kim
,
S.
Lee
,
D.
Lee
,
H. M.
Chung
,
G.
Kim
,
S. H.
Heo
,
C.
Kim
,
K. S.
Hong
, and
J.
Yoon
, “
Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy
,”
J. Am. Chem. Soc.
139
(
31
),
10880
(
2017
).
53.
N.
Kotagiri
,
G. P.
Sudlow
,
W. J.
Akers
, and
S.
Achilefu
, “
Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers
,”
Nat. Nanotechnol.
10
(
4
),
370
(
2015
).
54.
W. H.
De Jong
and
P. J. A.
Borm
, “
Drug delivery and nanoparticles applications and hazards
,”
Int. J. Nanomedicine.
3
(
2
),
133
–49 (2008).
55.
S. R.
Wang
,
K.
Ma
,
L. C.
Chen
,
H. X.
Zhu
,
S. F.
Liang
,
M.
Liu
, and
N. Z.
Xu
, “
TAZ promotes cell growth and inhibits celastrol-induced cell apoptosis
,”
Biosci. Rep.
36
(5), e00386 (2016).
56.
S. R.
Wang
,
K.
Ma
,
C. Q.
Zhou
,
Y.
Wang
,
G. H.
Hu
,
L. C.
Chen
,
Z.
Li
,
C. F.
Hu
,
Q.
Xu
,
H. X.
Zhu
 et al, “
LKB1 and YAP phosphorylation play important roles in celastrol-induced beta-catenin degradation in colorectal cancer
,”
Ther. Adv. Med. Oncol.
11
,
175883591984373
(
2019
).
57.
B.
Tian
,
C.
Wang
,
S.
Zhang
,
L. Z.
Feng
, and
Z.
Liu
, “
Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide
,”
ACS Nano
5
(
9
),
7000
(
2011
).
58.
Q. F.
Xiao
,
X. P.
Zheng
,
W. B.
Bu
,
W. Q.
Ge
,
S. J.
Zhang
,
F.
Chen
,
H. Y.
Xing
,
Q. G.
Ren
,
W. P.
Fan
,
K. L.
Zhao
 et al, “
A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy
,”
J. Am. Chem. Soc.
135
(
35
),
13041
(
2013
).
You do not currently have access to this content.