Herein, we used first-principles calculations and the particle swarm optimization technique to predict a highly incompressible W0.5Al0.5N phase with the space group R3¯m(166). Our results reveal that this phase, which was characterized by a negative formation enthalpy, is thermodynamically and dynamically stable, as revealed by the absence of imaginary modes in the phonon spectra. Furthermore, its energetic stability at a pressure of 15 GPa indicates a feasible strategy for experimental synthesis. The high performance stems from the optimized octahedral coordination between N and W/Al. Additionally, the good elastic parameters with BH of 310 GPa, GH of 206 GPa, and HV of 27 GPa confirm that it has preferable mechanical behaviors among the various W0.5Al0.5N phases and is even superior to those of the experimentally well-established NaCl-type phase. Based on the recently developed strain–stress method, it is shown that the ideal indentation strength of R3¯m(166) is about 32.7 GPa in the (1 1¯ 0) [0 0 1] direction, which is in excellent agreement with estimated HV. Therefore, our findings open the possibility for producing a new class of transition metal aluminum nitrides that have a broad range of applications.

1.
P. H.
Mayrhofer
,
C.
Mitterer
,
L.
Hultman
, and
H.
Clemens
,
Prog. Mater. Sci.
51
(
8
),
1032
1114
(
2006
).
2.
H. P.
Kattelus
,
E.
Kolawa
,
K.
Affolter
, and
M. A.
Nicolet
,
J. Vac. Sci. Technol. A
3
(
6
),
2246
2254
(
1985
).
3.
M.
Uekubo
,
T.
Oku
,
K.
Nii
,
M.
Murakami
,
K.
Takahiro
,
S.
Yamaguchi
,
T.
Nakano
, and
T.
Ohta
,
Thin Solid Films
286
(
1
),
170
175
(
1996
).
4.
S. Q.
Wang
,
I.
Raaijmakers
,
B. J.
Burrow
,
S.
Suthar
,
S.
Redkar
, and
K. B.
Kim
,
J. Appl. Phys.
68
(
10
),
5176
5187
(
1990
).
5.
S.
Piscanec
,
L.
Colombi Ciacchi
,
E.
Vesselli
,
G.
Comelli
,
O.
Sbaizero
,
S.
Meriani
, and
A.
De Vita
,
Acta Mater.
52
(
5
),
1237
1245
(
2004
).
6.
F.
Kawamura
,
H.
Yusa
, and
T.
Taniguchi
,
J. Am. Ceram. Soc.
101
(
2
),
949
956
(
2018
).
7.
K.
Xia
,
H.
Gao
,
C.
Liu
,
J.
Yuan
,
J.
Sun
,
H.-T.
Wang
, and
D.
Xing
,
Sci. Bull.
63
(
13
),
817
824
(
2018
).
8.
C.
Lu
,
Q.
Li
,
Y.
Ma
, and
C.
Chen
,
Phys. Rev. Lett.
119
(
11
),
115503
(
2017
).
9.
H. A.
Wriedt
,
Bull. Alloy Phase Diagrams
10
(
4
),
358
367
(
1989
).
10.
S.
Wang
,
X.
Yu
,
Z.
Lin
,
R.
Zhang
,
D.
He
,
J.
Qin
,
J.
Zhu
,
J.
Han
,
L.
Wang
,
H.-k.
Mao
,
J.
Zhang
, and
Y.
Zhao
,
Chem. Mater.
24
(
15
),
3023
3028
(
2012
).
11.
P.
Kroll
,
T.
Schröter
, and
M.
Peters
,
Angew. Chem. Int. Ed.
44
(
27
),
4249
4254
(
2005
).
12.
J.
Qin
,
X.
Zhang
,
Y.
Xue
,
X.
Li
,
M.
Ma
, and
R.
Liu
,
Comp. Mater. Sci.
79
,
456
462
(
2013
).
13.
M. J.
Mehl
,
D.
Finkenstadt
,
C.
Dane
,
G. L. W.
Hart
, and
S.
Curtarolo
,
Phys. Rev. B
91
(
18
),
184110
(
2015
).
14.
M.
Wittmer
,
J.
Noser
, and
H.
Melchior
,
J. Appl. Phys.
52
(
11
),
6659
6664
(
1981
).
15.
D.
McIntyre
,
J. E.
Greene
,
G.
Håkansson
,
J. E.
Sundgren
, and
W. D.
Münz
,
J. Appl. Phys.
67
(
3
),
1542
1553
(
1990
).
16.
G.
Gassner
,
P. H.
Mayrhofer
,
K.
Kutschej
,
C.
Mitterer
, and
M.
Kathrein
,
Surf. Coat. Technol.
201
(
6
),
3335
3341
(
2006
).
17.
C.
Louro
,
J. C.
Oliveira
, and
A.
Cavaleiro
,
Vacuum
83
(
10
),
1224
1227
(
2009
).
18.
T.
Polcar
and
A.
Cavaleiro
,
Int. J. Refract. Met. Hard Mater.
28
(
1
),
15
22
(
2010
).
19.
S.
Khamseh
,
Ceram. Int.
40
(
1, Part A
),
465
470
(
2014
).
20.
M. W.
Barsoum
,
Prog. Solid State Chem.
28
(
1–4
),
201
281
(
2000
).
21.
F.
Vaz
,
L.
Rebouta
,
M.
Andritschky
,
M. F.
da Silva
, and
J. C.
Soares
,
J. Eur. Ceram. Soc.
17
(
15
),
1971
1977
(
1997
).
22.
H.
Zhao
,
C.
Mu
, and
F.
Ye
,
J. Mater. Eng. Perform.
25
(
4
),
1446
1452
(
2016
).
23.
X.
Xiao
,
B.
Yao
, and
T.
Nonferr
,
Metal. Soc.
27
(
5
),
1063
1070
(
2017
).
24.
K.
Balasubramanian
,
S.
Khare
, and
D.
Gall
,
Phys. Rev. B
94
(
17
),
174111
(
2016
).
25.
W.
Sun
,
C. J.
Bartel
,
E.
Arca
,
S. R.
Bauers
,
B.
Matthews
,
B.
Orvañanos
,
B.-R.
Chen
,
M. F.
Toney
,
L. T.
Schelhas
,
W.
Tumas
,
J.
Tate
,
A.
Zakutayev
,
S.
Lany
,
A. M.
Holder
, and
G.
Ceder
,
Nat. Mater.
18
(
7
),
732
739
(
2019
).
26.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
(
9
),
094116
(
2010
).
27.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
(
10
),
2063
2070
(
2012
).
28.
Z.
Zhao
,
F.
Tian
,
X.
Dong
,
Q.
Li
,
Q.
Wang
,
H.
Wang
,
X.
Zhong
,
B.
Xu
,
D.
Yu
,
J.
He
,
H.-T.
Wang
,
Y.
Ma
, and
Y.
Tian
,
J. Am. Chem. Soc.
134
(
30
),
12362
12365
(
2012
).
29.
F.
Peng
,
M.
Miao
,
H.
Wang
,
Q.
Li
, and
Y.
Ma
,
J. Am. Chem. Soc.
134
(
45
),
18599
18605
(
2012
).
30.
L.
Zhu
,
H.
Liu
,
C. J.
Pickard
,
G.
Zou
, and
Y.
Ma
,
Nat. Chem.
6
,
644
(
2014
).
31.
Z. X.
Kang
,
H. Y.
He
,
R.
Ding
,
J. L.
Chen
, and
B. C.
Pan
,
Cryst. Growth Des.
18
(
4
),
2270
2278
(
2018
).
32.
K.
Gao
,
X.
Guo
,
B.
Zheng
,
J.
Wang
, and
L.
Wang
,
Mater. Today Chem.
20
,
100458
(
2021
).
33.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
570
(
2005
).
34.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
35.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
36.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
(
11
),
6671
6687
(
1992
).
37.
D.
Vanderbilt
,
Phys. Rev. B
41
(
11
),
7892
7895
(
1990
).
38.
B. G.
Pfrommer
,
M.
Côté
,
S. G.
Louie
, and
M. L.
Cohen
,
J. Comput. Phys.
131
(
1
),
233
240
(
1997
).
39.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
40.
K.
Parlinski
,
Z. Q.
Li
, and
Y.
Kawazoe
,
Phys. Rev. Lett.
78
(
21
),
4063
4066
(
1997
).
41.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
(
13
),
134106
(
2008
).
42.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
43.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. Lett.
50
(
9
),
697
700
(
1983
).
44.
R.
Hill
,
Proc. Phys. Soc. B
65
,
349
(
1952
).
45.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
,
Phys. Rev. Lett.
101
(
5
),
055504
(
2008
).
46.
R. W.
McKinney
,
P.
Gorai
,
S.
Manna
,
E.
Toberer
, and
V.
Stevanović
,
J. Mater. Chem. A
6
(
32
),
15828
15838
(
2018
).
47.
R. J.
Hemley
,
H.-k.
Mao
,
G.
Shen
,
J.
Badro
,
P.
Gillet
,
M.
Hanfland
, and
D.
Häusermann
,
Science
276
(
5316
),
1242
1245
(
1997
).
48.
Y.
Akahama
,
M.
Nishimura
,
K.
Kinoshita
,
H.
Kawamura
, and
Y.
Ohishi
,
Phys. Rev. Lett.
96
(
4
),
045505
(
2006
).
49.
J. A.
Venables
and
C. A.
English
,
Acta Crystallogr. Sect. B Struct. Sci.
30
,
929
935
(
1974
).
50.
R. L.
Mills
,
B.
Olinger
, and
D. T.
Cromer
,
J. Chem. Phys.
84
(
5
),
2837
2845
(
1986
).
51.
H.
Olijnyk
,
J. Chem. Phys.
93
(
12
),
8968
8972
(
1990
).
52.
B. D.
Ozsdolay
,
C. P.
Mulligan
,
M.
Guerette
,
L.
Huang
, and
D.
Gall
,
Thin Solid Films
590
,
276
283
(
2015
).
53.
Q.
Xia
,
H.
Xia
, and
A. L.
Ruoff
,
J. Appl. Phys.
73
(
12
),
8198
8200
(
1993
).
54.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon Press
,
1954
).
55.
Z.-j.
Wu
,
E.-j.
Zhao
,
H.-p.
Xiang
,
X.-f.
Hao
,
X.-j.
Liu
, and
J.
Meng
,
Phys. Rev. B
76
(
5
),
054115
(
2007
).
56.
J. W.
Morris
and
C. R.
Krenn
,
Philos. Mag. A
80
(
12
),
2827
2840
(
2000
).
57.
X. Q.
Chen
,
H. Y.
Niu
,
D. Z.
Li
, and
Y. Y.
Li
,
Intermetallics
19
(
9
),
1275
1281
(
2011
).
58.
S. F.
Pugh
,
Philos. Mag.
45
(
367
),
823
843
(
1954
), Series 7.
59.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
(
6
),
1564
1583
(
1992
).
60.
A.
Delafargue
and
F.-J.
Ulm
,
Int. J. Solids Struct.
41
(
26
),
7351
7360
(
2004
).
61.
D.
Wu
,
Y.
Chen
,
S.
Manna
,
K.
Talley
,
A.
Zakutayev
,
G. L.
Brennecka
,
C. V.
Ciobanu
,
P.
Constantine
, and
C. E.
Packard
,
IEEE Trans. Ultrason. Ferroelectr, Freq. Control
65
(
11
),
2167
2175
(
2018
).
62.
Z.
Pan
,
H.
Sun
,
Y.
Zhang
, and
C.
Chen
,
Phys. Rev. Lett.
102
(
5
),
055503
(
2009
).
63.
Z.
Pan
,
H.
Sun
, and
C.
Chen
,
Phys. Rev. Lett.
98
(
13
),
135505
(
2007
).

Supplementary Material

You do not currently have access to this content.