The interlayer coupling, which has a strong influence on the properties of van der Waals heterostructures, strongly depends on the interlayer distance. Although considerable theoretical interest has been demonstrated, experiments exploiting a variable interlayer coupling on nanocircuits are scarce due to the experimental difficulties. Here, we demonstrate a novel method to tune the interlayer coupling using hydrostatic pressure by incorporating van der Waals heterostructure based nanocircuits in piston-cylinder hydrostatic pressure cells with a dedicated sample holder design. This technique opens the way to conduct transport measurements on nanodevices under pressure using up to 12 contacts without constraints on the sample at the fabrication level. Using transport measurements, we demonstrate that a hexagonal boron nitride capping layer provides a good protection of van der Waals heterostructures from the influence of the pressure medium, and we show experimental evidence of the influence of pressure on the interlayer coupling using weak localization measurements on a transitional metal dichalcogenide/graphene heterostructure.

1.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
2.
K. J.
Koski
and
Y.
Cui
, “
The new skinny in two-dimensional nanomaterials
,”
ACS Nano
7
,
3739
3743
(
2013
).
3.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
(
6158
),
614
617
(
2013
).
4.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
, “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
,
197
200
(
2005
).
5.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
6.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
273
(
2017
).
7.
X.
Qian
,
J.
Liu
,
L.
Fu
, and
J.
Li
, “
Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
,”
Science
346
,
1344
(
2014
).
8.
Z.
Fei
,
T.
Palomaki
,
S.
Wu
,
W.
Zhao
,
X.
Cai
,
B.
Sun
,
P.
Nguyen
,
J.
Finney
,
X.
Xu
, and
D. H.
Cobden
, “
Edge conduction in monolayer WTe2
,”
Nat. Phys.
13
,
677
682
(
2017
).
9.
S.
Tang
,
C.
Zhang
,
D.
Wong
,
Z.
Pedramrazi
,
H.-Z.
Tsai
,
C.
Jia
,
B.
Moritz
,
M.
Claassen
,
H.
Ryu
,
S.
Kahn
,
J.
Jiang
,
H.
Yan
,
M.
Hashimoto
,
D.
Lu
,
R. G.
Moore
,
C.-C.
Hwang
,
C.
Hwang
,
Z.
Hussain
,
Y.
Chen
,
M. M.
Ugeda
,
Z.
Liu
,
X.
Xie
,
T. P.
Devereaux
,
M. F.
Crommie
,
S.-K.
Mo
, and
Z.-X.
Shen
, “
Quantum spin Hall state in monolayer 1T’-WTe2
,”
Nat. Phys.
13
,
683
687
(
2017
).
10.
S.
Wu
,
V.
Fatemi
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
, “
Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal
,”
Science
359
,
76
(
2018
).
11.
Y.
Shi
,
J.
Kahn
,
B.
Niu
,
Z.
Fei
,
B.
Sun
,
X.
Cai
,
B. A.
Francisco
,
D.
Wu
,
Z.-X.
Shen
,
X.
Xu
,
D. H.
Cobden
, and
Y.-T.
Cui
, “
Imaging quantum spin Hall edges in monolayer WTe2
,”
Sci. Adv.
5
,
eaat8799
(
2019
).
12.
W.
Zhao
,
Z.
Fei
,
T.
Song
,
H. K.
Choi
,
T.
Palomaki
,
B.
Sun
,
P.
Malinowski
,
M. A.
McGuire
,
J.-H.
Chu
,
X.
Xu
, and
D. H.
Cobden
, “
Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge
,”
Nat. Mater.
19
,
503
507
(
2020
).
13.
M.
Gmitra
,
D.
Kochan
,
P.
Högl
, and
J.
Fabian
, “
Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides
,”
Phys. Rev. B
93
,
155104
(
2016
).
14.
Z.
Wang
,
D.-K.
Ki
,
H.
Chen
,
H.
Berger
,
A. H.
MacDonald
, and
A. F.
Morpurgo
, “
Strong interface-induced spin-orbit interaction in graphene on WS2
,”
Nat. Commun.
6
,
8339
(
2015
).
15.
Z.
Wang
,
D.-K.
Ki
,
J. Y.
Khoo
,
D.
Mauro
,
H.
Berger
,
L. S.
Levitov
, and
A. F.
Morpurgo
, “
Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides
,”
Phys. Rev. X
6
,
041020
(
2016
).
16.
L. A.
Benítez
,
J. F.
Sierra
,
W.
Savero Torres
,
A.
Arrighi
,
F.
Bonell
,
M. V.
Costache
, and
S. O.
Valenzuela
, “
Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature
,”
Nat. Phys.
14
,
303
308
(
2018
).
17.
S.
Zihlmann
,
A. W.
Cummings
,
J. H.
Garcia
,
M.
Kedves
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Schönenberger
, and
P.
Makk
, “
Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures
,”
Phys. Rev. B
97
,
075434
(
2018
).
18.
T. S.
Ghiasi
,
J.
Ingla-Aynés
,
A. A.
Kaverzin
, and
B. J.
van Wees
, “
Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures
,”
Nano Lett.
17
,
7528
7532
(
2017
).
19.
T.
Wakamura
,
F.
Reale
,
P.
Palczynski
,
M. Q.
Zhao
,
A. T. C.
Johnson
,
S.
Guéron
,
C.
Mattevi
,
A.
Ouerghi
, and
H.
Bouchiat
, “
Spin-orbit interaction induced in graphene by transition metal dichalcogenides
,”
Phys. Rev. B
99
,
245402
(
2019
).
20.
B.
Fülöp
,
A.
Márffy
,
S.
Zihlmann
,
M.
Gmitra
,
E.
Tóvári
,
B.
Szentpéteri
,
M.
Kedves
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Fabian
,
C.
Schönenberger
,
P.
Makk
, and
S.
Csonka
, “Boosting proximity spin orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure,” arXiv:2103.13325 (2021).
21.
J. C.
Leutenantsmeyer
,
A. A.
Kaverzin
,
M.
Wojtaszek
, and
B. J.
van Wees
, “
Proximity induced room temperature ferromagnetism in graphene probed with spin currents
,”
2D Mater.
4
(
1
),
014001
(
2017
).
22.
B.
Karpiak
,
A. W.
Cummings
,
K.
Zollner
,
M.
Vila
,
D.
Khokhriakov
,
A. M.
Hoque
,
A.
Dankert
,
P.
Svedlindh
,
J.
Fabian
,
S.
Roche
, and
S. P.
Dash
, “
Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene
,”
2D Mater.
7
,
015026
(
2019
).
23.
Z.
Wang
,
C.
Tang
,
R.
Sachs
,
Y.
Barlas
, and
J.
Shi
, “
Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect
,”
Phys. Rev. Lett.
114
,
016603
(
2015
).
24.
T. S.
Ghiasi
,
A. A.
Kaverzin
,
A. H.
Dismukes
,
D. K.
de Wal
,
X.
Roy
, and
B. J.
van Wees
, “
Electrical and thermal generation of spin currents by magnetic bilayer graphene
,”
Nat. Nanotechnol.
16
,
788
794
(
2021
).
25.
D.
Zhong
,
K. L.
Seyler
,
X.
Linpeng
,
R.
Cheng
,
N.
Sivadas
,
B.
Huang
,
E.
Schmidgall
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
W.
Yao
,
D.
Xiao
,
K.-M. C.
Fu
, and
X.
Xu
, “
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
,”
Sci. Adv.
3
,
e1603113
(
2017
).
26.
D.
Zhong
,
K. L.
Seyler
,
X.
Linpeng
,
N. P.
Wilson
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
K.-M. C.
Fu
,
D.
Xiao
,
W.
Yao
, and
X.
Xu
, “
Layer-resolved magnetic proximity effect in van der Waals heterostructures
,”
Nat. Nanotechnol.
15
,
187
191
(
2020
).
27.
C. R.
Dean
,
L.
Wang
,
P.
Maher
,
C.
Forsythe
,
F.
Ghahari
,
Y.
Gao
,
J.
Katoch
,
M.
Ishigami
,
P.
Moon
,
M.
Koshino
,
T.
Taniguchi
,
K.
Watanabe
,
K. L.
Shepard
,
J.
Hone
, and
P.
Kim
, “
Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices
,”
Nature
497
,
598
(
2013
).
28.
L. A.
Ponomarenko
,
R. V.
Gorbachev
,
G. L.
Yu
,
D. C.
Elias
,
R.
Jalil
,
A. A.
Patel
,
A.
Mishchenko
,
A. S.
Mayorov
,
C. R.
Woods
,
J. R.
Wallbank
,
M.
Mucha-Kruczynski
,
B. A.
Piot
,
M.
Potemski
,
I. V.
Grigorieva
,
K. S.
Novoselov
,
F.
Guinea
,
V. I.
Fal’ko
, and
A. K.
Geim
, “
Cloning of Dirac fermions in graphene superlattices
,”
Nature
497
,
594
597
(
2013
).
29.
B.
Hunt
,
J. D.
Sanchez-Yamagishi
,
A. F.
Young
,
M.
Yankowitz
,
B. J.
LeRoy
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Moon
,
M.
Koshino
,
P.
Jarillo-Herrero
, and
R. C.
Ashoori
, “
Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure
,”
Science
340
,
1427
(
2013
).
30.
R.
Krishna Kumar
,
X.
Chen
,
G. H.
Auton
,
A.
Mishchenko
,
D. A.
Bandurin
,
S. V.
Morozov
,
Y.
Cao
,
E.
Khestanova
,
M.
Ben Shalom
,
A. V.
Kretinin
,
K. S.
Novoselov
,
L.
Eaves
,
I. V.
Grigorieva
,
L. A.
Ponomarenko
,
V. I.
Fal’ko
, and
A. K.
Geim
, “
High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices
,”
Science
357
,
181
(
2017
).
31.
R.
Krishna Kumar
,
A.
Mishchenko
,
X.
Chen
,
S.
Pezzini
,
G. H.
Auton
,
L. A.
Ponomarenko
,
U.
Zeitler
,
L.
Eaves
,
V. I.
Fal’ko
, and
A. K.
Geim
, “
High-order fractal states in graphene superlattices
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
5135
(
2018
).
32.
R.
Ribeiro-Palau
,
C.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
, and
C. R.
Dean
, “
Twistable electronics with dynamically rotatable heterostructures
,”
Science
361
,
690
(
2018
).
33.
L.
Wang
,
S.
Zihlmann
,
M.-H.
Liu
,
P.
Makk
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Baumgartner
, and
C.
Schönenberger
, “
New generation of Moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures
,”
Nano Lett.
19
,
2371
2376
(
2019
).
34.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
(
2018
).
35.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori
, and
P.
Jarillo-Herrero
, “
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
,”
Nature
556
,
80
(
2018
).
36.
H.
Weng
,
X.
Dai
, and
Z.
Fang
, “
Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators
,”
Phys. Rev. X
4
,
011002
(
2014
).
37.
F.
Munoz
,
H. P. O.
Collado
,
G.
Usaj
,
J. O.
Sofo
, and
C. A.
Balseiro
, “
Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels
,”
Phys. Rev. B
93
,
235443
(
2016
).
38.
Z.
Fan
,
Q.-F.
Liang
,
Y. B.
Chen
,
S.-H.
Yao
, and
J.
Zhou
, “
Transition between strong and weak topological insulator in ZrTe5 and HfTe5
,”
Sci. Rep.
7
,
045667
(
2017
).
39.
N. N. T.
Nam
and
M.
Koshino
, “
Lattice relaxation and energy band modulation in twisted bilayer graphene
,”
Phys. Rev. B
96
,
075311
(
2017
).
40.
Y.
Zhang
,
C.
Wang
,
L.
Yu
,
G.
Liu
,
A.
Liang
,
J.
Huang
,
S.
Nie
,
X.
Sun
,
Y.
Zhang
,
B.
Shen
,
J.
Liu
,
H.
Weng
,
L.
Zhao
,
G.
Chen
,
X.
Jia
,
C.
Hu
,
Y.
Ding
,
W.
Zhao
,
Q.
Gao
,
C.
Li
,
S.
He
,
L.
Zhao
,
F.
Zhang
,
S.
Zhang
,
F.
Yang
,
Z.
Wang
,
Q.
Peng
,
X.
Dai
,
Z.
Fang
,
Z.
Xu
,
C.
Chen
, and
X. J.
Zhou
, “
Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5
,”
Nat. Commun.
8
,
015512
(
2017
).
41.
F.
Guinea
and
N. R.
Walet
, “
Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters
,”
Phys. Rev. B
99
,
205134
(
2019
).
42.
N. R.
Chebrolu
,
B. L.
Chittari
, and
J.
Jung
, “
Flat bands in twisted double bilayer graphene
,”
Phys. Rev. B
99
,
235417
(
2019
).
43.
X.
Lin
,
H.
Zhu
, and
J.
Ni
, “
Pressure-induced gap modulation and topological transitions in twisted bilayer and twisted double bilayer graphene
,”
Phys. Rev. B
101
,
155405
(
2020
).
44.
M.
Dave
,
R.
Vaidya
,
S. G.
Patel
, and
A. R.
Jani
, “
High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method
,”
Bull. Mater. Sci.
27
,
213
216
(
2004
).
45.
R.
Aksoy
,
Y.
Ma
,
E.
Selvi
,
M. C.
Chyu
,
A.
Ertas
, and
A.
White
, “
X-ray diffraction study of molybdenum disulfide to 38.8 GPa
,”
J. Phys. Chem. Solids
67
,
1914
1917
(
2006
).
46.
R.
Aksoy
,
E.
Selvi
, and
Y.
Ma
, “
X-ray diffraction study of molybdenum diselenide to 35.9 GPa
,”
J. Phys. Chem. Solids
69
,
2138
2140
(
2008
).
47.
L.
Hromadová
,
R.
Martoňák
, and
E.
Tosatti
, “
Structure change, layer sliding, and metallization in high-pressure MoS2
,”
Phys. Rev. B
87
,
144105
(
2013
).
48.
M.
Rifliková
,
R.
Martoňák
, and
E.
Tosatti
, “
Pressure-induced gap closing and metallization of MoSe2 and MoTe2
,”
Phys. Rev. B
90
,
035108
(
2014
).
49.
F.
Zamborszky
,
I.
Kezsmarki
,
L. K.
Montgomery
, and
G.
Mihaly
, “
Pressure induced crossover in the electronic states of (TMTTF)2Br
,”
Ferroelectrics
249
,
57
62
(
2001
).
50.
I.
Kézsmárki
,
R.
Gaál
,
C. C.
Homes
,
B.
Sípos
,
H.
Berger
,
S.
Bordács
,
G.
Mihály
, and
L.
Forró
, “
High-pressure infrared spectroscopy: Tuning of the low-energy excitations in correlated electron systems
,”
Phys. Rev. B
76
,
205114
(
2007
).
51.
A. F.
Kusmartseva
,
B.
Sipos
,
H.
Berger
,
L.
Forró
, and
E.
Tutiš
, “
Pressure induced superconductivity in pristine 1T-TiSe2
,”
Phys. Rev. Lett.
103
,
236401
(
2009
).
52.
D.
VanGennep
,
A.
Linscheid
,
D.
Jackson
,
S.
Weir
,
Y.
Vohra
,
H.
Berger
,
G.
Stewart
,
R.
Hennig
,
P.
Hirschfeld
, and
J. J.
Hamlin
, “
Pressure-induced superconductivity in the giant Rashba system BiTeI
,”
J. Phys.: Condens. Matter
29
,
09LT02
(
2016
).
53.
L.
Forró
,
R.
Gaál
,
H.
Berger
,
P.
Fazekas
,
K.
Penc
,
I.
Kézsmárki
, and
G.
Mihály
, “
Pressure induced quantum critical point and non-fermi-liquid behavior in BaVS3
,”
Phys. Rev. Lett.
85
,
1938
1941
(
2000
).
54.
I.
Kézsmárki
,
S.
Csonka
,
H.
Berger
,
L.
Forró
,
P.
Fazekas
, and
G.
Mihály
, “
Pressure dependence of the spin gap in BaVS3
,”
Phys. Rev. B
63
,
081106
(
2001
).
55.
I.
Kézsmárki
,
G.
Mihály
,
R.
Gaál
,
N.
Barišić
,
H.
Berger
,
L.
Forró
,
C. C.
Homes
, and
L.
Mihály
, “
Pressure-induced suppression of the spin-gapped insulator phase in BaVS3: An infrared optical study
,”
Phys. Rev. B
71
,
193103
(
2005
).
56.
M.
Csontos
,
G.
Mihály
,
B.
Jankó
,
T.
Wojtowicz
,
X.
Liu
, and
J. K.
Furdyna
, “
Pressure-induced ferromagnetism in (In, Mn)Sb dilute magnetic semiconductor
,”
Nat. Mater.
4
,
447
449
(
2005
).
57.
T.
Li
,
S.
Jiang
,
N.
Sivadas
,
Z.
Wang
,
Y.
Xu
,
D.
Weber
,
J. E.
Goldberger
,
K.
Watanabe
,
T.
Taniguchi
,
C. J.
Fennie
,
K.
Fai Mak
, and
J.
Shan
, “
Pressure-controlled interlayer magnetism in atomically thin CrI3
,”
Nat. Mater.
18
(
12
),
1303
1308
(
2019
).
58.
N.
Barišić
,
R.
Gaál
,
I.
Kézsmárki
,
G.
Mihály
, and
L.
Forró
, “
Pressure dependence of the thermoelectric power of single-walled carbon nanotubes
,”
Phys. Rev. B
65
,
241403
(
2002
).
59.
M.
Yankowitz
,
J.
Jung
,
E.
Laksono
,
N.
Leconte
,
B. L.
Chittari
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Adam
,
D.
Graf
, and
C. R.
Dean
, “
Dynamic band-structure tuning of graphene moiré superlattices with pressure
,”
Nature
557
,
404
408
(
2018
).
60.
M.
Yankowitz
,
S.
Chen
,
H.
Polshyn
,
Y.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
D.
Graf
,
A. F.
Young
, and
C. R.
Dean
, “
Tuning superconductivity in twisted bilayer graphene
,”
Science
363
,
1059
(
2019
).
61.
T.
Song
,
Z.
Fei
,
M.
Yankowitz
,
Z.
Lin
,
Q.
Jiang
,
K.
Hwangbo
,
Q.
Zhang
,
B.
Sun
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
D.
Graf
,
T.
Cao
,
J.-H.
Chu
,
D. H.
Cobden
,
C. R.
Dean
,
D.
Xiao
, and
X.
Xu
, “
Switching 2D magnetic states via pressure tuning of layer stacking
,”
Nat. Mater.
18
,
1298
1302
(
2019
).
62.
J. C.
Leutenantsmeyer
,
J.
Ingla-Aynés
,
J.
Fabian
, and
B. J.
van Wees
, “
Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene
,”
Phys. Rev. Lett.
121
,
127702
(
2018
).
63.
J.
Xu
,
T.
Zhu
,
Y. K.
Luo
,
Y.-M.
Lu
, and
R. K.
Kawakami
, “
Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene
,”
Phys. Rev. Lett.
121
,
127703
(
2018
).
64.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
65.
P. J.
Zomer
,
M. H. D.
Guimarães
,
J. C.
Brant
,
N.
Tombros
, and
B. J.
van Wees
, “
Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride
,”
Appl. Phys. Lett.
105
,
013101
(
2014
).
66.
A.
Avsar
,
J. Y.
Tan
,
T.
Taychatanapat
,
J.
Balakrishnan
,
G. K. W.
Koon
,
Y.
Yeo
,
J.
Lahiri
,
A.
Carvalho
,
A. S.
Rodin
,
E. C. T.
O’Farrell
,
G.
Eda
,
A. H.
Castro Neto
, and
B.
Özyilmaz
, “
Spin-orbit proximity effect in graphene
,”
Nat. Commun.
5
,
4875
(
2014
).
67.
M.
Gmitra
and
J.
Fabian
, “
Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics
,”
Phys. Rev. B
92
,
155403
(
2015
).
68.
B.
Yang
,
M.-F.
Tu
,
J.
Kim
,
Y.
Wu
,
H.
Wang
,
J.
Alicea
,
R.
Wu
,
M.
Bockrath
, and
J.
Shi
, “
Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2
,”
2D Mater.
3
,
031012
(
2016
).
69.
B.
Yang
,
M.
Lohmann
,
D.
Barroso
,
I.
Liao
,
Z.
Lin
,
Y.
Liu
,
L.
Bartels
,
K.
Watanabe
,
T.
Taniguchi
, and
J.
Shi
, “
Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures
,”
Phys. Rev. B
96
,
041409
(
2017
).
70.
S.
Ringer
,
S.
Hartl
,
M.
Rosenauer
,
T.
Völkl
,
M.
Kadur
,
F.
Hopperdietzel
,
D.
Weiss
, and
J.
Eroms
, “
Measuring anisotropic spin relaxation in graphene
,”
Phys. Rev. B
97
,
205439
(
2018
).
71.
J. O.
Island
,
X.
Cui
,
C.
Lewandowski
,
J. Y.
Khoo
,
E. M.
Spanton
,
H.
Zhou
,
D.
Rhodes
,
J. C.
Hone
,
T.
Taniguchi
,
K.
Watanabe
,
L. S.
Levitov
,
M. P.
Zaletel
, and
A. F.
Young
, “
Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect
,”
Nature
571
,
85
89
(
2019
).
72.
J.
Amann
,
T.
Völkl
,
D.
Kochan
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Fabian
,
D.
Weiss
, and
J.
Eroms
, “
Gate-tunable spin-orbit-coupling in bilayer graphene-WSe2-heterostructures
,” arXiv:2012.05718 (
2020
).
73.
T.
Ihn
,
Electronic Quantum Transport in Mesoscopic Semiconductor Structures
(
Springer-Verlag
,
New York
,
2004
).
74.
K.
Murata
,
H.
Yoshino
,
H.
Yadav
,
Y.
Honda
, and
N.
Shirakawa
, “
Pt resistor thermometry and pressure calibration in a clamped pressure cell with the medium, Daphne 7373
,”
Rev. Sci. Instrum.
68
,
2490
2493
(
1997
).
75.
K.
Yokogawa
,
K.
Murata
,
H.
Yoshino
, and
S.
Aoyama
, “
Solidification of high-pressure medium Daphne 7373
,”
Jpn. J. Appl. Phys.
46
,
3636
3639
(
2007
).
76.
B.
Fülöp
, “
Dataset for the paper ‘Transport measurements on van der Waals heterostructures under pressure’
” (2021), Zenodo repository, https://zenodo.org/record/4773825.
You do not currently have access to this content.