The coexisting Néel and Brownian relaxation behaviors of magnetic nanoclusters in a viscous medium lead to a highly nonlinear field-dependent magnetization response, which can benefit magnetic particle imaging and hyperthermia. To empirically correlate the moment and particle dynamics with the core and cluster sizes, we performed spectroscopic susceptometry to assess frequency-dependent complex magnetic susceptibility of water-dispersed magnetic nanoclusters at very low field amplitude. The superparamagnetic core particles of nanoclusters should undergo fast moment dynamics. However, for the nanoclusters experiencing the field-driven Brownian relaxation, their constituent core particles appear to collectively behave as a large effective core with a long Néel relaxation time constant. We later numerically interpolated the phase-delay spectra of the immobilized nanoclusters to estimate the Néel relaxation time constant attributed to the intrinsic dipolar interparticle magnetism. From additional static magnetometry, the overlapping bimodal magnetic moment distribution predicts the secondary core sizes larger than the actual sizes from the electron microscopy images. The different estimates of the effective Néel relaxation time constant obtained from the (nearly field-free) frequency-dependent and (static) field-dependent magnetization responses further indicate the activation energies limiting the relaxation behavior of magnetic nanoclusters. This finding highlights the number of effective cores affecting the intracluster interaction energy.

1.
Z.
Lu
and
Y.
Yin
, “
Colloidal nanoparticle clusters: Functional materials by design
,”
Chem. Soc. Rev.
41
,
6874
6887
(
2012
).
2.
D.
Niculaes
,
A.
Lak
,
G. C.
Anyfantis
,
S.
Marras
,
O.
Laslett
,
S. K.
Avugadda
,
M.
Cassani
,
D.
Serantes
,
O.
Hovorka
,
R.
Chantrell
, and
T.
Pellegrino
, “
Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance
,”
ACS Nano
11
,
12121
12133
(
2017
).
3.
G.
Muscas
,
G.
Concas
,
S.
Laureti
,
A. M.
Testa
,
R.
Mathieu
,
J. A.
De Toro
,
C.
Cannas
,
A.
Musinu
,
M. A.
Novak
,
C.
Sangregorio
,
S. S.
Lee
, and
D.
Peddis
, “
The interplay between single particle anisotropy and interparticle interactions in ensembles of magnetic nanoparticles
,”
Phys. Chem. Chem. Phys.
20
,
28634
28643
(
2018
).
4.
V.
Schaller
,
G.
Wahnström
,
A.
Sanz-Velasco
,
S.
Gustafsson
,
E.
Olsson
,
P.
Enoksson
, and
C.
Johansson
, “
Effective magnetic moment of magnetic multicore nanoparticles
,”
Phys. Rev. B
80
,
092406
(
2009
).
5.
N. A.
Usov
and
O. N.
Serebryakova
, “
Equilibrium properties of assembly of interacting superparamagnetic nanoparticles
,”
Sci. Rep.
10
,
013677
(
2020
).
6.
E. C.
Stoner
and
E. P.
Wohlfarth
, “
A mechanism of magnetic hysteresis in heterogeneous alloys
,”
Philos. Trans. R. Soc., A
240
,
599
642
(
1948
).
7.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
, “
Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
,”
J. Appl. Phys.
109
,
083921
(
2011
).
8.
C. P.
Bean
and
J. D.
Livingston
, “
Superparamagnetism
,”
J. Appl. Phys.
30
,
S120
S129
(
1959
).
9.
R. H.
Kodama
, “
Magnetic nanoparticles
,”
J. Magn. Magn. Mater.
200
,
359
372
(
1999
).
10.
J. S.
Lee
,
J. M.
Cha
,
H. Y.
Yoon
,
J.-K.
Lee
, and
Y. K.
Kim
, “
Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity
,”
Sci. Rep.
5
,
012135
(
2015
).
11.
Q.
Li
,
C. W.
Kartikowati
,
S.
Horie
,
T.
Ogi
,
T.
Iwaki
, and
K.
Okuyama
, “
Correlation between particle size/domain structure and magnetic properties of highly crystalline fe3o4 nanoparticles
,”
Sci. Rep.
7
,
9894
(
2017
).
12.
E.
Blanco
,
H.
Shen
, and
M.
Ferrari
, “
Principles of nanoparticle design for overcoming biological barriers to drug delivery
,”
Nat. Biotechnol.
33
,
941
951
(
2015
).
13.
L.
Gutiérrez
,
R.
Costo
,
C.
Grüttner
,
F.
Westphal
,
N.
Gehrke
,
D.
Heinke
,
A.
Fornara
,
Q. A.
Pankhurst
,
C.
Johansson
,
S.
Veintemillas-Verdaguer
, and
M. P.
Morales
, “
Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications
,”
Dalton Trans.
44
,
2943
2952
(
2015
).
14.
A.
Kostopoulou
and
A.
Lappas
, “
Colloidal magnetic nanocrystal clusters: Variable length-scale interaction mechanisms, synergetic functionalities and technological advantages
,”
Nanotechnol. Rev.
4
,
595
624
(
2015
).
15.
G.
Hemery
,
A. C.
Keyes
,
E.
Garaio
,
I.
Rodrigo
,
J. A.
Garcia
,
F.
Plazaola
,
E.
Garanger
, and
O.
Sandre
, “
Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis
,”
Inorg. Chem.
56
,
8232
8243
(
2017
).
16.
H.
Kratz
,
M.
Taupitz
,
A.
Ariza de Schellenberger
,
O.
Kosch
,
D.
Eberbeck
,
S.
Wagner
,
L.
Trahms
,
B.
Hamm
, and
J.
Schnorr
, “
Novel magnetic multicore nanoparticles designed for mpi and other biomedical applications: From synthesis to first in vivo studies
,”
PLoS ONE
13
,
1
22
(
2018
).
17.
P.
Ilg
, “
Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles
,”
Phys. Rev. B
95
,
214427
(
2017
).
18.
S. B.
Trisnanto
,
S.
Ota
, and
Y.
Takemura
, “
Two-step relaxation process of colloidal magnetic nanoclusters under pulsed fields
,”
Appl. Phys. Express
11
,
075001
(
2018
).
19.
C.
Blanco-Andujar
,
D.
Ortega
,
P.
Southern
,
Q. A.
Pankhurst
, and
N. T. K.
Thanh
, “
High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: Microwave synthesis, and the role of core-to-core interactions
,”
Nanoscale
7
,
1768
1775
(
2015
).
20.
P.
Bender
,
J.
Fock
,
M. F.
Hansen
,
L. K.
Bogart
,
P.
Southern
,
F.
Ludwig
,
F.
Wiekhorst
,
W.
Szczerba
,
L. J.
Zeng
,
D.
Heinke
,
N.
Gehrke
,
M. T. F.
Díaz
,
D.
González-Alonso
,
J. I.
Espeso
,
J. R.
Fernández
, and
C.
Johansson
, “
Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
,”
Nanotechnology
29
,
425705
(
2018
).
21.
H.
Kratz
,
A.
Mohtashamdolatshahi
,
D.
Eberbeck
,
O.
Kosch
,
R.
Hauptmann
,
F.
Wiekhorst
,
M.
Taupitz
,
B.
Hamm
, and
J.
Schnorr
, “
MPI phantom study with a high-performing multicore tracer made by coprecipitation
,”
Nanomaterials
9
,
1466
(
2019
).
22.
S. B.
Trisnanto
and
Y.
Takemura
, “
High-frequency Néel relaxation response for submillimeter magnetic particle imaging under low field gradient
,”
Phys. Rev. Appl.
14
,
064065
(
2020
).
23.
S.
Ota
and
Y.
Takemura
, “
Characterization of Néel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles
,”
J. Phys. Chem. C
123
,
28859
28866
(
2019
).
24.
J. L.
Dormann
,
F.
D’Orazio
,
F.
Lucari
,
E.
Tronc
,
P.
Prené
,
J. P.
Jolivet
,
D.
Fiorani
,
R.
Cherkaoui
, and
M.
Noguès
, “
Thermal variation of the relaxation time of the magnetic moment of γ-Fe2O3 nanoparticles with interparticle interactions of various strengths
,”
Phys. Rev. B
53
,
14291
14297
(
1996
).
25.
P.
Bender
,
E.
Wetterskog
,
D.
Honecker
,
J.
Fock
,
C.
Frandsen
,
C.
Moerland
,
L. K.
Bogart
,
O.
Posth
,
W.
Szczerba
,
H.
Gavilán
,
R.
Costo
,
M. T.
Fernández-Díaz
,
D.
González-Alonso
,
L.
Fernández Barquín
, and
C.
Johansson
, “
Dipolar-coupled moment correlations in clusters of magnetic nanoparticles
,”
Phys. Rev. B
98
,
224420
(
2018
).
26.
F.
Ludwig
,
C.
Balceris
,
C.
Jonasson
, and
C.
Johansson
, “
Analysis of ac susceptibility spectra for the characterization of magnetic nanoparticles
,”
IEEE Trans. Magn.
53
,
7898860
(
2017
).
27.
G. T.
Landi
, “
The random dipolar-field approximation for systems of interacting magnetic particles
,”
J. Appl. Phys.
113
,
163908
(
2013
).
28.
J.
Dieckhoff
,
D.
Eberbeck
,
M.
Schilling
, and
F.
Ludwig
, “
Magnetic-field dependence of Brownian and Néel relaxation times
,”
J. Appl. Phys.
119
,
043903
(
2016
).
29.
C.
Barrera
,
V.
Florián-Algarin
,
A.
Acevedo
, and
C.
Rinaldi
, “
Monitoring gelation using magnetic nanoparticles
,”
Soft Matter
6
,
3662
3668
(
2010
).
30.
P.
Bender
,
A.
Tschöpe
, and
R.
Birringer
, “
Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes
,”
J. Magn. Magn. Mater.
346
,
152
160
(
2013
).
31.
S. B.
Trisnanto
and
Y.
Kitamoto
, “
Distributive activation volumes of magnetically interacting nanostructures
,”
J. Phys. Chem. C
123
,
23732
23737
(
2019
).
32.
V.
Singh
and
V.
Banerjee
, “
Hysteresis in a magnetic bead and its applications
,”
Appl. Phys. Lett.
98
,
133702
(
2011
).
33.
F. W.
Østerberg
,
G.
Rizzi
, and
M. F.
Hansen
, “
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
,”
J. Appl. Phys.
113
,
234508
(
2013
).
34.
S.
Ranoo
,
B. B.
Lahiri
,
T.
Muthukumaran
, and
J.
Philip
, “
Enhancement in hyperthermia efficiency under in situ orientation of superparamagnetic iron oxide nanoparticles in dispersions
,”
Appl. Phys. Lett.
115
,
043102
(
2019
).
35.
D. P.
Valdés
,
E.
Lima
,
R. D.
Zysler
, and
E.
De Biasi
, “
Modeling the magnetic-hyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specific power absorption
,”
Phys. Rev. Appl.
14
,
014023
(
2020
).
36.
M.
Anand
, “
Hysteresis in a linear chain of magnetic nanoparticles
,”
J. Appl. Phys.
128
,
023903
(
2020
).
37.
M.
Anand
, “
Thermal and dipolar interaction effect on the relaxation in a linear chain of magnetic nanoparticles
,”
J. Magn. Magn. Mater.
522
,
167538
(
2021
).
38.
M.
Anand
,
V.
Banerjee
, and
J.
Carrey
, “
Relaxation in one-dimensional chains of interacting magnetic nanoparticles: Analytical formula and kinetic Monte Carlo simulations
,”
Phys. Rev. B
99
,
024402
(
2019
).
39.
D. B.
Reeves
and
J. B.
Weaver
, “
Approaches for modeling magnetic nanoparticle dynamics
,”
Crit. Rev. Biomed. Eng.
42
,
85
93
(
2014
).
40.
S. B.
Trisnanto
,
K.
Yasuda
, and
Y.
Kitamoto
, “
Dipolar magnetism and electrostatic repulsion of colloidal interacting nanoparticle system
,”
Jpn. J. Appl. Phys.
57
,
02CC06
(
2018
).
41.
M.
Shliomis
and
V.
Stepanov
, “
Frequency dependence and long time relaxation of the susceptibility of the magnetic fluids
,”
J. Magn. Magn. Mater.
122
,
176
181
(
1993
).
42.
K.
Enpuku
,
T.
Sasayama
, and
T.
Yoshida
, “
Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application
,”
J. Appl. Phys.
119
,
184902
(
2016
).
43.
S.
Ota
and
Y.
Takemura
, “
Evaluation of easy-axis dynamics in a magnetic fluid by measurement and analysis of the magnetization curve in an alternating magnetic field
,”
Appl. Phys. Express
10
,
085001
(
2017
).
44.
M.
Suwa
,
A.
Uotani
, and
S.
Tsukahara
, “
Alignment and small oscillation of superparamagnetic iron oxide nanoparticle in liquid under alternating magnetic field
,”
J. Appl. Phys.
125
,
123901
(
2019
).
45.
K. D.
Usadel
, “
Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating magnetic fields
,”
Phys. Rev. B
95
,
104430
(
2017
).
46.
J. L.
García-Palacios
and
F. J.
Lázaro
, “
Langevin-dynamics study of the dynamical properties of small magnetic particles
,”
Phys. Rev. B
58
,
14937
14958
(
1998
).
47.
S.
Ota
and
Y.
Takemura
, “
Dynamics of magnetization and easy axis of individual ferromagnetic nanoparticle subject to anisotropy and thermal fluctuations
,”
J. Magn. Soc. Jpn.
43
,
34
41
(
2019
).
48.
T.
Kahmann
and
F.
Ludwig
, “
Magnetic field dependence of the effective magnetic moment of multi-core nanoparticles
,”
J. Appl. Phys.
127
,
233901
(
2020
).
49.
E.
Wetterskog
,
A.
Castro
,
L.
Zeng
,
S.
Petronis
,
D.
Heinke
,
E.
Olsson
,
L.
Nilsson
,
N.
Gehrke
, and
P.
Svedlindh
, “
Size and property bimodality in magnetic nanoparticle dispersions: Single domain particles vs strongly coupled nanoclusters
,”
Nanoscale
9
,
4227
4235
(
2017
).
50.
P.
Bender
,
J.
Fock
,
C.
Frandsen
,
M. F.
Hansen
,
C.
Balceris
,
F.
Ludwig
,
O.
Posth
,
E.
Wetterskog
,
L. K.
Bogart
,
P.
Southern
,
W.
Szczerba
,
L.
Zeng
,
K.
Witte
,
C.
Grüttner
,
F.
Westphal
,
D.
Honecker
,
D.
González-Alonso
,
L.
Fernández Barquín
, and
C.
Johansson
, “
Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers
,”
J. Phys. Chem. C
122
,
3068
3077
(
2018
).
51.
W. T.
Coffey
and
Y. P.
Kalmykov
, “
Thermal fluctuations of magnetic nanoparticles: Fifty years after brown
,”
J. Appl. Phys.
112
,
121301
(
2012
).
52.
P. C.
Fannin
and
S. W.
Charles
, “
On the calculation of the Néel relaxation time in uniaxial single-domain ferromagnetic particles
,”
J. Phys. D: Appl. Phys.
27
,
185
(
1994
).
53.
Y. L.
Raĭkher
and
M. I.
Shliomis
, “The effective field method in the orientational kinetics of magnetic fluids and liquid crystals,” in Advances in Chemical Physics (John Wiley & Sons, Inc., 2007), pp. 595–751.
54.
W. F.
Brown
, “
Thermal fluctuations of a single-domain particle
,”
Phys. Rev.
130
,
1677
1686
(
1963
).
55.
K.
Enpuku
,
A. L.
Elrefai
,
T.
Yoshida
,
T.
Kahmann
,
J.
Zhong
,
T.
Viereck
, and
F.
Ludwig
, “
Estimation of the effective magnetic anisotropy constant of multi-core based magnetic nanoparticles from the temperature dependence of the coercive field
,”
J. Appl. Phys.
127
,
133903
(
2020
).
56.
H.
Mamiya
,
H.
Fukumoto
,
J. L.
Cuya Huaman
,
K.
Suzuki
,
H.
Miyamura
, and
J.
Balachandran
, “
Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia
,”
ACS Nano
14
,
8421
8432
(
2020
).
57.
D.
Eberbeck
,
F.
Wiekhorst
,
S.
Wagner
, and
L.
Trahms
, “
How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance
,”
Appl. Phys. Lett.
98
,
182502
(
2011
).
58.
T.
Sasayama
,
T.
Yoshida
,
M. M.
Saari
, and
K.
Enpuku
, “
Comparison of volume distribution of magnetic nanoparticles obtained from M-H curve with a mixture of log-normal distributions
,”
J. Appl. Phys.
117
,
17D155
(
2015
).
59.
P.
Bender
,
C.
Balceris
,
F.
Ludwig
,
O.
Posth
,
L. K.
Bogart
,
W.
Szczerba
,
A.
Castro
,
L.
Nilsson
,
R.
Costo
,
H.
Gavilán
,
D.
González-Alonso
,
I.
de Pedro
,
L. F.
Barquín
, and
C.
Johansson
, “
Distribution functions of magnetic nanoparticles determined by a numerical inversion method
,”
New J. Phys.
19
,
073012
(
2017
).
60.
W. C.
Nunes
,
L. M.
Socolovsky
,
J. C.
Denardin
,
F.
Cebollada
,
A. L.
Brandl
, and
M.
Knobel
, “
Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time
,”
Phys. Rev. B
72
,
212413
(
2005
).
61.
K.
Enpuku
,
Y.
Ueoka
,
T.
Sakakibara
,
M.
Ura
,
T.
Yoshida
,
T.
Mizoguchi
, and
A.
Kandori
, “
Liquid-phase immunoassay utilizing binding reactions between magnetic markers and targets in the presence of a magnetic field
,”
Appl. Phys. Express
7
,
097001
(
2014
).
62.
S. B.
Trisnanto
and
Y.
Takemura
, “
Modulating relaxation responses of magnetic nanotracers for submillimeter imaging
,”
Appl. Phys. Lett.
115
,
123101
(
2019
).
You do not currently have access to this content.