The anticorrelation between quantum efficiency (QE) and electron spin polarization (ESP) from a p -doped GaAs activated to negative electron affinity is studied in detail using an ensemble Monte Carlo approach. The photoabsorption, momentum and spin relaxation during transport, and tunneling of electrons through the surface potential barrier are modeled to identify fundamental mechanisms, which limit the efficiency of GaAs spin-polarized electron sources. In particular, we study the response of QE and ESP to various parameters, such as the photoexcitation energy, doping density, and electron affinity level. Our modeling results for various transport and emission characteristics are in good agreement with available experimental data. Our findings show that the behavior of both QE and ESP at room temperature can be fully explained by the bulk relaxation mechanisms and the time that electrons spend in the material before being emitted.

1.
C.
Hernandez-Garcia
,
P. G.
O’Shea
, and
M. L.
Stutzman
,
Phys. Today
61
,
44
(
2008
).
2.
D. T.
Pierce
,
R. J.
Celotta
,
G.-C.
Wang
,
W. N.
Unertl
,
A.
Galejs
,
C. E.
Kuyatt
, and
S. R.
Mielczarek
,
Rev. Sci. Instrum.
51
,
478
(
1980
).
3.
M.
Erbudak
and
B.
Reihl
,
Appl. Phys. Lett.
33
,
584
(
1978
).
4.
E.
Tsentalovich
,
J.
Bessuille
,
E.
Ihloff
,
J.
Kelsey
,
R.
Redwine
, and
C.
Vidal
,
Nucl. Inst. Methods Phys. Res.
A 947
,
162734
(
2019
).
5.
W.
Liu
,
Y.
Chen
,
W.
Lu
,
A.
Moy
,
M.
Poelker
,
M.
Stutzman
, and
S.
Zhang
,
Appl. Phys. Lett.
109
,
252104
(
2016
).
6.
W.
Liu
,
M.
Poelker
,
X.
Peng
,
S.
Zhang
, and
M.
Stutzman
,
J. Appl. Phys.
122
,
035703
(
2017
).
7.
J. L.
McCarter
,
M. L.
Stutzman
,
K. W.
Trantham
,
T. G.
Anderson
,
A. M.
Cook
, and
T. J.
Gay
,
Nucl. Instr. Methods Phys. Res. A
618
,
30
(
2010
).
8.
W. E.
Spicer
,
Phys. Rev.
112
,
114
(
1958
).
9.
W. E.
Spicer
,
Appl. Phys.
12
,
115
(
1977
).
10.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
).
11.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
12.
L.
Tomizawa
,
Numerical Simulation of Submicron Semiconductor Devices
(
Artech House
,
1993
).
13.
D.
Vasileska
and
S. M.
Goodnick
, “Bulk Monte Carlo: Implementation details and source codes download” (2010), see https://nanohub.org/resources/9109.
14.
S.
Karkare
,
D.
Dimitrov
,
W.
Schaff
,
L.
Cultrera
,
A.
Bartnik
,
X.
Liu
,
E.
Sawyer
,
T.
Esposito
, and
I.
Bazarov
,
J. Appl. Phys.
113
,
104904
(
2013
).
15.
S.
Karkare
,
L.
Boulet
,
L.
Cultrera
,
B.
Dunham
,
X.
Liu
,
W.
Schaff
, and
I.
Bazarov
,
Phys. Rev. Lett.
112
,
097601
(
2014
).
16.
W.
Liu
and
E.
Wang
,
J. Appl. Phys.
126
,
075706
(
2019
).
17.
R. J.
Elliott
,
Phys. Rev.
96
,
266
(
1954
).
18.
Y.
Yafet
,
Solid State Physics
, edited by F. Seitz and D. Turnbull (Academic Press,
1963
), Vol.
14
, pp.
1
98
.
19.
M. I.
D’yakonov
and
V. I.
Perel'
,
Sov. Phys. Solid State
13
,
3023
(
1972
).
20.
G. L.
Bir
,
A. G.
Aronov
, and
G. E.
Pikus
,
Sov. Phys. JETP
42
,
705
(
1976
).
21.
G.
Fishman
and
G.
Lampel
,
Phys. Rev. B
16
,
820
(
1977
).
22.
A. G.
Aronov
,
G. E.
Pikus
, and
A. N.
Titkov
,
Sov. Phys. JETP
57
,
680
(
1983
).
23.
K.
Zerrouati
,
F.
Fabre
,
G.
Bacquet
,
J.
Bandet
,
J.
Frandon
,
G.
Lampel
, and
D.
Paget
,
Phys. Rev. B
37
,
1334
(
1988
).
24.
P. H.
Song
and
K. W.
Kim
,
Phys. Rev. B
66
,
035207
(
2002
).
25.
A.
Dyson
and
B. K.
Ridley
,
Phys. Rev. B
69
,
125211
(
2004
).
26.
H.
Sanada
,
I.
Arata
,
Y.
Ohno
,
Z.
Chen
,
K.
Kayanuma
,
Y.
Oka
,
F.
Matsukura
, and
H.
Ohno
,
Apl. Phys. Lett.
81
,
2788
(
2002
).
27.
E. A.
Barry
,
A. A.
Kiselev
, and
K. W.
Kim
,
Apl. Phys. Lett.
82
,
3686
(
2003
).
28.
J. H.
Jiang
and
M. W.
Wu
,
Phys. Rev. B
79
,
125206
(
2009
).
29.
J. S.
Blakemore
,
J. Appl. Phys.
53
,
R123
(
1982
).
30.
S.
Zollner
,
J. Appl. Phys.
90
,
515
(
2001
).
31.
D.
Vasileska
,
S. M.
Goodnick
, and
G.
Klimeck
,
Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation
(
Taylor & Francis Group
,
2010
).
32.
G.
Vergara
,
L. J.
Gomez
,
J.
Capmany
, and
M. T.
Montojo
,
Vacuum
48
,
155
(
1997
).
33.
M. A.
Osman
and
D. K.
Ferry
,
Phys. Rev. B
36
,
6018
(
1987
).
34.
S.
Ozaki
and
S.
Adachi
,
J. Appl. Phys.
78
,
3380
(
1995
).
35.
R. P.
Joshi
,
R. O.
Grondin
, and
D. K.
Ferry
,
Phys. Rev. B
42
,
5685
(
1990
).
36.
B.
Van Zeghbroeck
, “Principles of semiconductor devices” (2011), see http://ece-www.colorado.edu/bart/book/.
37.
S.
Tiwari
and
S. L.
Wright
,
Appl. Phys. Lett.
56
,
563
(
1990
).
38.
P.
Lugli
,
P.
Bordone
,
L.
Reggiani
,
M.
Rieger
,
P.
Kocevar
, and
S. M.
Goodnick
,
Phys. Rev. B
39
,
7852
(
1989
).
39.
M. I.
D’yakonov
and
V. I.
Perel’
,
Sov. Phys. JETP
33
,
1053
(
1971
).
40.
B. K.
Ridley
,
Quantum Processes in Semiconductors
, 5th ed. (
Oxford University Press
,
2013
).
41.
H.
Taniyama
,
M.
Tomizawa
,
T.
Furuta
, and
A.
Yoshii
,
J. Appl. Phys.
68
,
621
(
1990
).
42.
R.
Brunetti
,
C.
Jacoboni
,
A.
Matulionis
, and
V.
Dienys
,
Physica B+C
134
,
369
(
1985
).
43.
P.
Lugli
and
D. K.
Ferry
,
IEEE Trans. Electron Devices
ED-32
,
2431
(
1985
).
44.
T.
Furuta
and
M.
Tomizawa
,
Appl. Phys. Lett.
56
,
824
(
1990
).
45.
J. G.
Ruch
and
G. S.
Kino
,
Phys. Rev.
174
,
921
(
1968
).
46.
G. E.
Pikus
and
A. N.
Titkov
, in Optical Orientation (North-Holland Physics Publishing, 1984), Chap. 3, pp. 73–131.
47.
R. L.
Bell
,
Negative Electron Affinity Devices
(
Oxford University Press
,
1973
).
48.
A. H.
Sommer
,
Photoemissive Materials. Preparation, Properties, and Uses
(
John Wiley & Sons
,
1968
).
49.
N. G.
Nilsson
,
Appl. Phys. Lett.
33
,
653
(
1978
).
50.
51.
D. G.
Fisher
,
R. E.
Enstrom
,
J. S.
Escher
, and
B. F.
Williams
,
J. Appl. Phys.
43
,
3815
(
1972
).
52.
See https://en.wikipedia.org/wiki/Verlet_integration for more information on numerical implementation of the velocity Verlet algorithm.
53.
G.
Vergara
,
A.
Herrera-Gómez
, and
W. E.
Spicer
,
Surf. Sci.
436
,
83
(
1999
).
54.
K. L.
Jensen
,
D.
Finkenstadt
,
A.
Shabaev
,
S. G.
Lambrakos
,
N. A.
Moody
,
J. J.
Petillo
,
H.
Yamaguchi
, and
F.
Liu
,
J. Appl. Phys.
123
,
045301
(
2018
).
55.
A.
Levi
,
Applied Quantum Mechanics
(
Cambridge University Press
,
2003
).
56.
K. L.
Jensen
,
A.
Shabaev
,
S. G.
Lambrakos
,
D.
Finkenstadt
,
N. A.
Moody
,
A. J.
Neukirch
,
S.
Tretiak
,
D. A.
Shiffler
, and
J. J.
Petillo
,
J. Appl. Phys.
127
,
235301
(
2020
).
57.
G.
Vergara
,
A.
Herrera-Gómez
, and
W. E.
Spicer
,
J. Appl. Phys.
80
,
1809
(
1996
).
58.
O.
Chubenko
and
A.
Afanasev
, “Testing polarized electron sources at Thomas Jefferson national accelerator facility,” in Gordon Research Conference: Photonuclear Reactions (Holderness School, Holderness, NH, 2014) (poster).
59.
H. C.
Casey
, Jr.
and
F.
Stern
,
J. Appl. Phys.
47
,
631
(
1976
).
60.
I. V.
Bazarov
,
B. M.
Dunham
,
Y.
Li
,
X.
Liu
,
D. G.
Ouzounov
,
C. K.
Sinclair
,
F.
Hannon
, and
T.
Miyajima
,
J. Appl. Phys.
103
,
054901
(
2008
).
61.
W.-Y.
Chung
and
D. K.
Ferry
,
Solid St. Electron.
31
,
1369
(
1988
).
62.
S.
Saikin
,
M.
Shen
,
M.-C.
Cheng
, and
V.
Privman
,
J. Appl. Phys.
94
,
1769
(
2003
).
63.
S.
Saikin
,
M.
Shen
,
M.-C.
Cheng
, and
V.
Privman
,
Math. Comput. Simul.
65
,
351
(
2004
).
64.
K.
Blum
,
Density Matrix Theory and Applications
, 3rd ed. (
Springer
,
2012
).
65.
J.
Kessler
,
Polarized Electrons
, 2nd ed. (
Springer-Verlag
,
1985
).
66.
S.
Bandyopadhyay
and
M.
Cahay
,
Introduction to Spintronics
, 1st ed. (
SRC Press
,
2008
).
You do not currently have access to this content.