Ultrashort laser pulses are often used in industrial manufacturing due to the small heat-affected zones they produce and their low melt formation. A contrasting approach aims to exploit the residual heat of successively applied laser pulses in combination with the material response. As a result of the heat accumulation within a burst, the formation of a melt film that is highly spatially and temporally confined is possible. Experiments, theoretical analysis, and numerical heat-flow simulations are used to show the influence of the laser parameters on pulsed melting and surface structure formation. Special attention is paid to the temporal delay between the pulses. A comparison of the process on iron and titanium allows the influence of material properties to be considered.

1.
C.
Momma
,
U.
Knop
, and
S.
Nolte
,
Prog. Biomed. Res.
4
(
1
),
39
44
(
1999
).
2.
J.
König
and
T.
Bauer
, Proc. SPIE 7925, 792510 (2011).
3.
R.
Weber
,
C.
Freitag
,
T. V.
Kononenko
,
M.
Hafner
,
V.
Onuseit
,
P.
Berger
, and
T.
Graf
,
Phys. Procedia
39
,
137
(
2012
).
4.
A.
Michalowski
,
F.
Nyenhuis
, and
G.
Kunz
,
PhotonicsViews
17
,
42
(
2020
).
5.
B.
Neuenschwander
,
T.
Kramer
,
B.
Lauer
, and
B.
Jaeggi
, Proc. SPIE 9350, 93500U (2015).
6.
F.
Bauer
,
A.
Michalowski
,
T.
Kiedrowski
, and
S.
Nolte
,
Opt. Express
23
,
1035
(
2015
).
7.
J.
Schille
,
L.
Schneider
, and
U.
Loeschner
,
Appl. Phys. A
120
,
847
(
2015
).
8.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
Von Alvensleben
, and
A.
Tünnermann
,
Appl. Phys. A
63
,
109
(
1996
).
9.
A.
Ben-Yakar
,
R. L.
Byer
,
A.
Harkin
,
J.
Ashmore
,
H. A.
Stone
,
M.
Shen
, and
E.
Mazur
,
Appl. Phys. Lett.
83
,
3030
(
2003
).
10.
R.
Weber
,
T.
Graf
,
P.
Berger
,
V.
Onuseit
,
M.
Wiedenmann
,
C.
Freitag
, and
A.
Feuer
,
Opt. Express
22
,
11312
(
2014
).
11.
M.
Sailer
,
F.
Jansen
,
A.
Fehrenbacher
,
U.
Quentin
,
F.
Kanal
,
R.
Scelle
,
H.
Diekamp
,
C.
Tan
,
M.
Ginter
,
P.
Sperling
,
B.
Fuehra
,
C.
Eberhardt
,
D. H.
Sutter
, and
A.
Budnicki
, Proc. SPIE 11267, 112670V (2020).
12.
D. J.
Förster
,
S.
Faas
,
S.
Gröninger
,
F.
Bauer
,
A.
Michalowski
,
R.
Weber
, and
T.
Graf
,
Appl. Surf. Sci.
440
,
926
(
2018
).
13.
A.
Semerok
and
C.
Dutouquet
,
Thin Solid Films
453
,
501
(
2004
).
14.
X.
Zhao
and
Y. C.
Shin
,
Appl. Phys. Lett.
105
,
111907
(
2014
).
15.
T.
Kramer
,
Y.
Zhang
,
S.
Remund
,
B.
Jaeggi
,
A.
Michalowski
,
L.
Grad
, and
B.
Neuenschwander
,
J. Laser Micro/Nanoeng.
12
,
107
(
2017
).
16.
B.
Neuenschwander
,
B.
Jaeggi
,
D. J.
Foerster
,
T.
Kramer
, and
S.
Remund
,
J. Laser Appl.
31
,
022203
(
2019
).
17.
C.
Kerse
,
H.
Kalaycıoğlu
,
P.
Elahi
,
B.
Çetin
,
D. K.
Kesim
,
Ö.
Akçaalan
,
S.
Yavaş
,
M. D.
Aşık
,
B.
Öktem
,
H.
Hoogland
,
R.
Holzwarth
, and
F. Ö.
Ilday
,
Nature
537
,
84
(
2016
).
18.
T.
Hirsiger
,
M.
Gafner
,
S.
Remund
,
M. V.
Chaja
,
A.
Urniezius
,
S.
Butkus
, and
B.
Neuenschwander
, Proc. SPIE 11267, 112670T (2020).
19.
M.
Domke
,
V.
Matylitsky
, and
S.
Stroj
,
Appl. Surf. Sci.
505
,
144594
(
2020
).
20.
H.
Matsumoto
,
Z.
Lin
, and
J.
Kleinert
, Proc. SPIE 10519, 1051902 (2018).
21.
S.
Hendow
,
H.
Takahashi
,
M.
Yamaguchi
, and
J.
Xu
, Proc. SPIE 11268, 1126809 (2020).
22.
G.
Bonamis
,
E.
Audouard
,
C.
Hönninger
,
J.
Lopez
,
K.
Mishchik
,
E.
Mottay
, and
I.
Manek-Hönninger
,
Opt. Express
28
,
27702
(
2020
).
23.
G.
Bonamis
,
K.
Mishchick
,
E.
Audouard
,
C.
Hönninger
,
E.
Mottay
,
J.
Lopez
, and
I.
Manek-Hönninger
,
J. Laser Appl.
31
,
022205
(
2019
).
24.
F.
Nyenhuis
,
A.
Michalowski
, and
J.
L’huillier
,
Proc. SPIE
11268, 112680B (2020).
25.
F.
Nyenhuis
,
A.
Michalowski
, and
J.
L’huillier
,
J. Laser Micro/Nanoeng.
15
,
209
(
2020
).
26.
J. H.
Lambert
,
Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae
(
Klett
,
1760
).
28.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Schmid
,
V.
Rouffiange
, and
P.-E.
Martin
, Proc. SPIE 8243, 824307 (2012).
29.
D.
Bäuerle
,
Laser Processing and Chemistry
(
Springer Science & Business Media
,
2011
).
30.
S. I.
Anisimov
and
B.
Rethfeld
, Proc. SPIE 3093, 192–203 (1997).
31.
L. V.
Zhigilei
,
Z.
Lin
, and
D. S.
Ivanov
,
J. Phys. Chem. C
113
,
11892
(
2009
).
32.
C.
Wu
and
L. V.
Zhigilei
,
Appl. Phys. A
114
,
11
(
2014
).
33.
D.
Ivanov
and
L.
Zhigilei
,
Appl. Phys. A
79
,
977
(
2004
).
34.
B.
Rethfeld
,
K.
Sokolowski-Tinten
,
D.
Von Der Linde
, and
S.
Anisimov
,
Appl. Phys. A
79
,
767
(
2004
).
35.
B.
Rethfeld
,
D. S.
Ivanov
,
M. E.
Garcia
, and
S. I.
Anisimov
,
J. Phys. D: Appl. Phys.
50
,
193001
(
2017
).
36.
W.-L.
Chan
,
R. S.
Averback
,
D. G.
Cahill
, and
Y.
Ashkenazy
,
Phys. Rev. Lett.
102
,
095701
(
2009
).
37.
R.
Fang
,
A.
Vorobyev
, and
C.
Guo
,
Light Sci. Appl.
6
,
e16256
(
2017
).
38.
A.
Miotello
and
R.
Kelly
,
Appl. Phys. A
69
,
S67
(
1999
).
39.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Schmid
,
A.
Dommann
,
A.
Neels
,
T.
Bandi
, and
G.
Hennig
, Proc. SPIE 8607, 86070D (2013).
40.
C. S.
Nathala
,
A.
Ajami
,
W.
Husinsky
,
B.
Farooq
,
S. I.
Kudryashov
,
A.
Daskalova
,
I.
Bliznakova
, and
A.
Assion
,
Appl. Phys. A
122
,
107
(
2016
).
41.
M.
Martynyuk
,
Combust. Explos. Shock Waves
13
,
178
(
1977
).
42.
H.
Tamura
,
T.
Kohama
,
K.
Kondo
, and
M.
Yoshida
,
J. Appl. Phys.
89
,
3520
(
2001
).
43.
K.
Sokolowski-Tinten
,
J.
Bialkowski
,
A.
Cavalleri
,
D.
von der Linde
,
A.
Oparin
,
J.
Meyer-ter Vehn
, and
S.
Anisimov
,
Phys. Rev. Lett.
81
,
224
(
1998
).
44.
S.
Anisimov
, in 30 Years Of The Landau Institute: Selected Papers (World Scientific, 1996), pp. 14–15.
45.
A.
Vogel
and
V.
Venugopalan
,
Chem. Rev.
103
,
577
(
2003
).
46.
M.
Von Allmen
,
J. Appl. Phys.
47
,
5460
(
1976
).
47.
M. M.
Martynyuk
,
Sov. Phys. Tech. Phys.
21
(
4
),
430
433
(
1976
).
48.
A.
Miotello
and
R.
Kelly
,
Appl. Phys. Lett.
67
,
3535
(
1995
).
49.
C.
Cheng
and
X.
Xu
,
Phys. Rev. B
72
,
165415
(
2005
).
50.
N.
Bulgakova
and
A.
Bulgakov
,
Appl. Phys. A
73
,
199
(
2001
).
51.
R.
Kelly
and
A.
Miotello
,
Appl. Surf. Sci.
96
,
205
(
1996
).
52.
J.
Bonse
,
M.
Munz
, and
H.
Sturm
,
J. Appl. Phys.
97
,
013538
(
2005
).
53.
J.
Bonse
,
A.
Rosenfeld
, and
J.
Krüger
,
J. Appl. Phys.
106
,
104910
(
2009
).
54.
S.
Walder
and
P.
Ryder
,
Mater. Sci. Eng. A
203
,
197
(
1995
).
55.
F.
Bauer
,
A.
Michalowski
, and
S.
Nolte
,
J. Laser Micro/Nanoeng.
10
,
325
(
2015
).
56.
A.
Vorobyev
and
C.
Guo
,
Opt. Express
14
,
13113
(
2006
).
57.
D. S.
Ivanov
and
L. V.
Zhigilei
,
Phys. Rev. Lett.
91
,
105701
(
2003
).
58.
K.
Sokolowski-Tinten
,
J.
Bialkowski
,
M.
Boing
,
A.
Cavalleri
, and
D.
Von Der Linde
,
Phys. Rev. B
58
,
R11805
(
1998
).
59.
C.
Körner
, “Theoretische untersuchungen zur wechselwirkung von ultrakurzen laserpulsen mit metallen,” Ph.D. thesis (Uitgever niet vastgesteld, 1997).
60.
M. J.
Assael
,
K.
Kakosimos
,
R. M.
Banish
,
J.
Brillo
,
I.
Egry
,
R.
Brooks
,
P. N.
Quested
,
K. C.
Mills
,
A.
Nagashima
,
Y.
Sato
, and
W. A.
Wakeham
,
J. Phys. Chem. Ref. Data
35
,
285
(
2006
).
61.
62.
J. J.
Valencia
and
P. N.
Quested
, “Thermophysical properties,” in ASM Handbook (ASM International, 2008), Vol. 15, pp. 468–481.
63.
J.
König
,
S.
Nolte
, and
A.
Tünnermann
,
Opt. Express
13
,
10597
(
2005
).
64.
D.
Von der Linde
and
K.
Sokolowski-Tinten
,
Appl. Surf. Sci.
154
,
1
(
2000
).
65.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
,
Phys. Rev. B
77
,
075133
(
2008
).
66.
A.
Rudenko
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J.-P.
Colombier
,
Appl. Surf. Sci.
470
,
228
(
2019
).
67.
A.
Rudenko
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J.-P.
Colombier
,
Nanophotonics
8
,
459
(
2019
).
68.
P.
Lalanne
,
J.-P.
Hugonin
,
H.
Liu
, and
B.
Wang
,
Surf. Sci. Rep.
64
,
453
(
2009
).
69.
A. Y.
Nikitin
,
S. G.
Rodrigo
,
F.
García-Vidal
, and
L.
Martín-Moreno
,
New J. Phys.
11
,
123020
(
2009
).
70.
A. Y.
Nikitin
,
F.
García-Vidal
, and
L.
Martín-Moreno
,
Phys. Rev. Lett.
105
,
073902
(
2010
).
71.
H.
Zhang
,
J.-P.
Colombier
,
C.
Li
,
N.
Faure
,
G.
Cheng
, and
R.
Stoian
,
Phys. Rev. B
92
,
174109
(
2015
).
72.
J.
Skolski
,
G.
Römer
,
J.
Vincenc Obona
, and
A.
Huis in’t Veld
,
J. Appl. Phys.
115
,
103102
(
2014
).
73.
S.
He
,
J. J.
Nivas
,
A.
Vecchione
,
M.
Hu
, and
S.
Amoruso
,
Opt. Express
24
,
3238
(
2016
).
74.
J.
Bonse
,
S.
Höhm
,
S. V.
Kirner
,
A.
Rosenfeld
, and
J.
Krüger
,
IEEE J. Sel. Top. Quantum Electron.
23
,
9000615
(
2016
).
75.
J.
Sipe
,
J. F.
Young
,
J.
Preston
, and
H.
Van Driel
,
Phys. Rev. B
27
,
1141
(
1983
).
76.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
,
Nature
424
,
824
(
2003
).
77.
J.
Bonse
and
S.
Gräf
,
Laser Photon. Rev.
14
,
2000215
(
2020
).
78.
T. J.
Derrien
,
J.
Krüger
, and
J.
Bonse
,
J. Opt.
18
,
115007
(
2016
).
79.
X.
Sedao
,
C.
Maurice
,
F.
Garrelie
,
J.-P.
Colombier
,
S.
Reynaud
,
R.
Quey
, and
F.
Pigeon
,
Appl. Phys. Lett.
104
,
171605
(
2014
).
80.
G. D.
Tsibidis
,
A.
Mimidis
,
E.
Skoulas
,
S. V.
Kirner
,
J.
Krüger
,
J.
Bonse
, and
E.
Stratakis
,
Appl. Phys. A
124
,
27
(
2018
).
81.
A.
Rudenko
,
A.
Abou-Saleh
,
F.
Pigeon
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J.-P.
Colombier
,
Acta Mater.
194
,
93
(
2020
).
82.
M.-C.
Velli
,
G. D.
Tsibidis
,
A.
Mimidis
,
E.
Skoulas
,
Y.
Pantazis
, and
E.
Stratakis
,
J. Appl. Phys.
128
,
183102
(
2020
).
83.
G. D.
Tsibidis
,
M.
Barberoglou
,
P. A.
Loukakos
,
E.
Stratakis
, and
C.
Fotakis
,
Phys. Rev. B
86
,
115316
(
2012
).
84.
G. D.
Tsibidis
,
C.
Fotakis
, and
E.
Stratakis
,
Phys. Rev. B
92
,
041405
(
2015
).
85.
G. D.
Tsibidis
,
E.
Skoulas
,
A.
Papadopoulos
, and
E.
Stratakis
,
Phys. Rev. B
94
,
081305
(
2016
).
86.
H.
Reather
,
Springer Tracts in Modern Physics
(
Springer
,
1988
), Vol. 111, p.
1
.
87.
I.
Gnilitskyi
,
T. J.-Y.
Derrien
,
Y.
Levy
,
N. M.
Bulgakova
,
T.
Mocek
, and
L.
Orazi
,
Sci. Rep.
7
,
1
(
2017
).
88.
N.
Saunders
,
U.
Guo
,
X.
Li
,
A.
Miodownik
, and
J.-P.
Schillé
,
JOM
55
,
60
(
2003
).
89.
P. D.
Desai
,
J. Phys. Chem. Ref. Data
15
,
967
(
1986
).
90.
P.
Desai
,
Int. J. Thermophys.
8
,
781
(
1987
).
91.
K.
Mills
,
B.
Monaghan
, and
B.
Keene
,
Int. Mater. Rev.
41
,
209
(
1996
).
92.
P.
Johnson
and
R.
Christy
,
Phys. Rev. B
9
,
5056
(
1974
).
93.
H.
Petter Langtangen
and
S.
Linge
,
Finite Difference Computing with PDEs: A Modern Software Approach
(
Springer Nature
,
2017
).
You do not currently have access to this content.