Optically resonant dielectric metasurfaces offer unique capability to fully control the wavefront, polarization, intensity, or spectral content of light based on the excitation and interference of different electric and magnetic Mie multipolar resonances. Recent advances of the wide accessibility in nanofabrication and nanotechnologies have led to a surge in the research field of high-quality functional optical metasurfaces, which can potentially replace or even outperform conventional optical components with ultra-thin features. Replacing conventional optical filtering components with metasurface technology offers remarkable advantages, including lower integration cost, ultra-thin compact configuration, easy combination with multiple functions, and less restriction on materials. Here, we propose and experimentally demonstrate a planar narrow bandpass filter based on the optical dielectric metasurface composed of Si nanoresonators in arrays. A broadband transmission spectral valley (around 200 nm) has been realized by combining electric and magnetic dipole resonances adjacent to each other. Meanwhile, we obtain a narrow-band transmission peak by exciting a high-quality leaky mode, which is formed by partially breaking a bound state in the continuum generated by the collective longitudinal magnetic dipole resonances in the metasurface. Owing to the in-plane inversion symmetry of our nanostructure, the radiation of this antisymmetric mode is inhibited at far field, manifesting itself a sharp Fano-shape peak in the spectrum. Our proposed metasurface-based filter shows a stable performance for oblique light incidence with small angles (within 10°). Our work implies many potential applications of nanoscale photonics devices, such as displays, spectroscopy, etc.

1.
V.
Klimov
,
Nanoplasmonics: Fundamentals and Applications
(
Pan Stanford
,
Singapore
,
2012
).
2.
G.
Barbillon
,
Nanoplasmonics: Fundamentals and Applications
(
BoD—Books on Demand
,
2017
).
3.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science & Business Media
,
2007
).
4.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk’yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
).
5.
D.
Neshev
and
I.
Aharonovich
, “
Optical metasurfaces: New generation building blocks for multi-functional optics
,”
Light-Sci. Appl.
7
,
58
(
2018
).
6.
S.
Chang
,
X.
Guo
, and
X.
Ni
, “
Optical metasurfaces: Progress and applications
,”
Annu. Rev. Mater. Res.
48
,
279
302
(
2018
).
7.
F.
Capasso
, “
The future and promise of flat optics: A personal perspective
,”
Nanophotonics
7
,
953
957
(
2018
).
8.
Y. H.
Fu
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. F.
Yu
, and
B.
Luk’yanchuk
, “
Directional visible light scattering by silicon nanoparticles
,”
Nat. Commun.
4
,
1527
(
2013
).
9.
R.
Paniagua-Domínguez
,
Y. F.
Yu
,
A. E.
Miroshnichenko
,
L. A.
Krivitsky
,
Y. H.
Fu
,
V.
Valuckas
,
L.
Gonzaga
,
Y. T.
Toh
,
A. Y. S.
Kay
,
B.
Luk’yanchuk
et al., “
Generalized Brewster effect in dielectric metasurfaces
,”
Nat. Commun.
7
,
10362
(
2016
).
10.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B.
Luk’yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
, “
Nonradiating anapole modes in dielectric nanoparticles
,”
Nat. Commun.
6
,
8069
(
2015
).
11.
B.
Luk’yanchuk
,
R.
Paniagua-Domínguez
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
, and
Y. S.
Kivshar
, “
Hybrid anapole modes of high-index dielectric nanoparticles
,”
Phys. Rev. A
95
,
063820
(
2017
).
12.
A. G.
Lamprianidis
and
A. E.
Miroshnichenko
, “
Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams
,”
Beilstein J. Nanotechnol.
9
,
1478
1490
(
2018
).
13.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
14.
Y.
Yang
,
W.
Wang
,
A.
Boulesbaa
,
I. I.
Kravchenko
,
D. P.
Briggs
,
A.
Puretzky
,
D.
Geohegan
, and
J.
Valentine
, “
Nonlinear Fano-resonant dielectric metasurfaces
,”
Nano Lett.
15
,
7388
7393
(
2015
).
15.
E.
Kamenetskii
,
A.
Sadreev
, and
A.
Miroshnichenko
,
Fano Resonances in Optics and Microwaves
(
Springer
,
2018
).
16.
J.
Von Neumann
and
E.
Wigner
, “
Über merkwürdige diskrete Eigenwerte
,”
Phys. Z.
30
,
465
467
(
1929
).
17.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
18.
L.
Xu
,
K.
Zangeneh Kamali
,
L.
Huang
,
M.
Rahmani
,
A.
Smirnov
,
R.
Camacho-Morales
,
Y.
Ma
,
G.
Zhang
,
M.
Woolley
,
D.
Neshev
et al., “
Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators
,”
Adv. Sci.
6
,
1802119
(
2019
).
19.
K.
Koshelev
,
S.
Kruk
,
E.
Melik-Gaykazyan
,
J.-H.
Choi
,
A.
Bogdanov
,
H.-G.
Park
, and
Y.
Kivshar
, “
Subwavelength dielectric resonators for nonlinear nanophotonics
,”
Science
367
,
288
292
(
2020
).
20.
D.
Lin
,
P.
Fan
,
E.
Hasman
, and
M. L.
Brongersma
, “
Dielectric gradient metasurface optical elements
,”
Science
345
,
298
302
(
2014
).
21.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
, “
Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,”
Science
352
,
1190
1194
(
2016
).
22.
M.
Khorasaninejad
and
F.
Capasso
, “
Metalenses: Versatile multifunctional photonic components
,”
Science
358
,
eaam8100
(
2017
).
23.
M. I.
Shalaev
,
J.
Sun
,
A.
Tsukernik
,
A.
Pandey
,
K.
Nikolskiy
, and
N. M.
Litchinitser
, “
High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode
,”
Nano Lett.
15
,
6261
6266
(
2015
).
24.
Z.
Zhou
,
J.
Li
,
R.
Su
,
B.
Yao
,
H.
Fang
,
K.
Li
,
L.
Zhou
,
J.
Liu
,
D.
Stellinga
,
C. P.
Reardon
et al., “
Efficient silicon metasurfaces for visible light
,”
ACS Photonics
4
,
544
551
(
2017
).
25.
A. J.
Ollanik
,
J. A.
Smith
,
M. J.
Belue
, and
M. D.
Escarra
, “
High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared
,”
ACS Photonics
5
,
1351
1358
(
2018
).
26.
R. A.
Aoni
,
M.
Rahmani
,
L.
Xu
,
K. Z.
Kamali
,
A.
Komar
,
J.
Yan
,
D.
Neshev
, and
A. E.
Miroshnichenko
, “
High-efficiency visible light manipulation using dielectric metasurfaces
,”
Sci. Rep.
9
,
6510
(
2019
).
27.
P.
Genevet
and
F.
Capasso
, “
Holographic optical metasurfaces: A review of current progress
,”
Rep. Prog. Phys.
78
,
024401
(
2015
).
28.
K.
Wang
,
J. G.
Titchener
,
S. S.
Kruk
,
L.
Xu
,
H.-P.
Chung
,
M.
Parry
,
I. I.
Kravchenko
,
Y.-H.
Chen
,
A. S.
Solntsev
,
Y. S.
Kivshar
et al., “
Quantum metasurface for multiphoton interference and state reconstruction
,”
Science
361
,
1104
1108
(
2018
).
29.
T.
Stav
,
A.
Faerman
,
E.
Maguid
,
D.
Oren
,
V.
Kleiner
,
E.
Hasman
, and
M.
Segev
, “
Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials
,”
Science
361
,
1101
1104
(
2018
).
30.
G.
Marino
,
A. S.
Solntsev
,
L.
Xu
,
V. F.
Gili
,
L.
Carletti
,
A. N.
Poddubny
,
M.
Rahmani
,
D. A.
Smirnova
,
H.
Chen
,
A.
Lemaître
et al., “
Spontaneous photon-pair generation from a dielectric nanoantenna
,”
Optica
6
,
1416
1422
(
2019
).
31.
P. W.
Yuen
and
M.
Richardson
, “
An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
,”
Imaging Sci. J.
58
,
241
253
(
2010
).
32.
W.-Y.
Jang
,
Z.
Ku
,
J.
Jeon
,
J. O.
Kim
,
S. J.
Lee
,
J.
Park
,
M. J.
Noyola
, and
A.
Urbas
, “
Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array
,”
Sci. Rep.
6
,
1
9
(
2016
).
33.
P.
Zijlstra
,
J. W.
Chon
, and
M.
Gu
, “
Five-dimensional optical recording mediated by surface plasmons in gold nanorods
,”
Nature
459
,
410
413
(
2009
).
34.
H.
Lochbihler
, “
Polarizing and angle-sensitive color filter in transmittance for security feature applications
,”
Adv. Opt. Technol.
4
,
71
77
(
2015
).
35.
Y.
Chen
,
X.
Duan
,
M.
Matuschek
,
Y.
Zhou
,
F.
Neubrech
,
H.
Duan
, and
N.
Liu
, “
Dynamic color displays using stepwise cavity resonators
,”
Nano Lett.
17
,
5555
5560
(
2017
).
36.
X.
Duan
,
S.
Kamin
, and
N.
Liu
, “
Dynamic plasmonic colour display
,”
Nat. Commun.
8
,
1
9
(
2017
).
37.
C. W.
Hsu
,
B.
Zhen
,
W.
Qiu
,
O.
Shapira
,
B. G.
DeLacy
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Transparent displays enabled by resonant nanoparticle scattering
,”
Nat. Commun.
5
,
3152
(
2014
).
38.
Y.-T.
Yoon
and
S.-S.
Lee
, “
Transmission type color filter incorporating a silver film based etalon
,”
Opt. Express
18
,
5344
5349
(
2010
).
39.
H.
Kang
,
H.
Jung
, and
H.
Lee
, “
Independently alterable synthetic multispectral metamaterial filter based on etalon structure
,”
Adv. Opt. Mater.
3
,
774
778
(
2015
).
40.
C.-S.
Park
,
V. R.
Shrestha
,
S.-S.
Lee
,
E.-S.
Kim
, and
D.-Y.
Choi
, “
Omnidirectional color filters capitalizing on a nano-resonator of Ag–TiO2–Ag integrated with a phase compensating dielectric overlay
,”
Sci. Rep.
5
,
8467
(
2015
).
41.
A.
Jain
,
P.
Moitra
,
T.
Koschny
,
J.
Valentine
, and
C. M.
Soukoulis
, “
Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms
,”
Adv. Opt. Mater.
3
,
1431
1438
(
2015
).
42.
Y.
Horie
,
A.
Arbabi
,
E.
Arbabi
,
S. M.
Kamali
, and
A.
Faraon
, “
Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures
,”
Opt. Express
24
,
11677
11682
(
2016
).
43.
J.
Zhang
,
J.
Yang
,
M.
Schell
,
A.
Anopchenko
,
L.
Tao
,
Z.
Yu
, and
H. W. H.
Lee
, “
Gate-tunable optical filter based on conducting oxide metasurface heterostructure
,”
Opt. Lett.
44
,
3653
3656
(
2019
).
44.
M.
Barrow
and
J.
Phillips
, “
Polarization-independent narrowband transmittance filters via symmetry-protected modes in high contrast gratings
,”
Opt. Lett.
45
,
4348
4351
(
2020
).
45.
R. C.
Ng
,
J. C.
Garcia
,
J. R.
Greer
, and
K. T.
Fountaine
, “
Polarization-independent, narrowband, near-IR spectral filters via guided mode resonances in ultrathin a-Si nanopillar arrays
,”
ACS Photonics
6
,
265
271
(
2019
).
46.
H.
Jia
,
Q.
Wu
,
C.
Jiang
,
H.
Wang
,
L.
Wang
,
J.
Jiang
, and
D.
Zhang
, “
High-transmission polarization-dependent active plasmonic color filters
,”
Appl. Opt.
58
,
704
711
(
2019
).
47.
R. C.
Ng
,
J. C.
Garcia
,
J. R.
Greer
, and
K. T.
Fountaine
, “
Miniaturization of a-Si guided mode resonance filter arrays for near-IR multi-spectral filtering
,”
Appl. Phys. Lett.
117
,
111106
(
2020
).
48.
Y.
Jung
,
H.
Jung
,
H.
Choi
, and
H.
Lee
, “
Polarization selective color filter based on plasmonic nanograting embedded etalon structures
,”
Nano Lett.
20
,
6344
6350
(
2020
).
49.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
2008
).
50.
V. R.
Tuz
,
V. V.
Khardikov
,
A. S.
Kupriianov
,
K. L.
Domina
,
S.
Xu
,
H.
Wang
, and
H.-B.
Sun
, “
High-quality trapped modes in all-dielectric metamaterials
,”
Opt. Express
26
,
2905
2916
(
2018
).
51.
C.
Zhou
,
X.
Qu
,
S.
Xiao
, and
M.
Fan
, “
Imaging through a Fano-resonant dielectric metasurface governed by quasi-bound states in the continuum
,”
Phys. Rev. Appl.
14
,
044009
(
2020
).
52.
C.
Zhou
,
S.
Li
,
C.
Gong
,
Y.
Wang
,
X.
Liu
, and
M.
Zhan
, “Resonant asymmetric all-dielectric metasurface for boosting third-harmonic generation,” arXiv:2004.01088 (2020).
53.
L.
Xu
,
M.
Rahmani
,
Y.
Ma
,
D. A.
Smirnova
,
K. Z.
Kamali
,
F.
Deng
,
Y. K.
Chiang
,
L.
Huang
,
H.
Zhang
,
S.
Gould
et al., “
Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach
,”
Adv. Photon.
2
,
026003
(
2020
).
54.
S.
Molesky
,
Z.
Lin
,
A. Y.
Piggott
,
W.
Jin
,
J.
Vucković
, and
A. W.
Rodriguez
, “
Inverse design in nanophotonics
,”
Nat. Photonics
12
,
659
670
(
2018
).
55.
K.
Yao
,
R.
Unni
, and
Y.
Zheng
, “
Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale
,”
Nanophotonics
8
,
339
366
(
2019
).
56.
L.
Huang
,
L.
Xu
, and
A. E.
Miroshnichenko
, “Deep learning enabled nanophotonics,” in Advances in Deep Learning (IntechOpen, 2020).
57.
S.
Murai
,
D. R.
Abujetas
,
G. W.
Castellanos
,
J. A.
Sanchez-Gil
,
F.
Zhang
, and
J. G.
Rivas
, “
Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles
,”
ACS Photonics
7
,
2204
2210
(
2020
).
You do not currently have access to this content.