We demonstrate ferroelectricity in Mg-substituted ZnO thin films with the wurtzite structure. Zn1−xMgxO films are grown by dual-cathode reactive magnetron sputtering on (111)-Pt // (0001)-Al2O3 substrates at temperatures ranging from 26 to 200 °C for compositions spanning from x = 0 to x = 0.37. X-ray diffraction indicates a decrease in the c-lattice parameter and an increase in the a-lattice parameter with increasing Mg content, resulting in a nearly constant c/a axial ratio of 1.595 over this composition range. Transmission electron microscopy studies show abrupt interfaces between Zn1−xMgxO films and the Pt electrode. When prepared at pO2 = 0.025, film surfaces are populated by abnormally oriented grains as measured by atomic force microscopy for Mg concentrations >29%. Raising pO2 to 0.25 eliminates the misoriented grains. Optical measurements show increasing bandgap values with increasing Mg content. When prepared on a 200 °C substrate, films display ferroelectric switching with remanent polarizations exceeding 100 μC cm−2 and coercive fields below 3 MV cm−1 when the Mg content is between ∼30% and ∼37%. Substrate temperature can be lowered to ambient conditions, and when doing so, capacitor stacks show only minor sacrifices to crystal orientation and nearly identical remanent polarization values; however, coercive fields drop below 2 MV/cm. Using ambient temperature deposition, we demonstrate ferroelectric capacitor stacks integrated directly with polymer substrate surfaces.

1.
Z.
Fan
,
J.
Chen
, and
J.
Wang
, “
Ferroelectric HfO2-based materials for next-generation ferroelectric memories
,”
J. Adv. Dielectr.
6
,
1630003
(
2016
).
2.
K.
Florent
 et al., “
Understanding ferroelectric Al:HfO2 thin films with Si-based electrodes for 3D applications
,”
J. Appl. Phys.
121
,
204103
(
2017
).
3.
J. F.
Scott
,
L. D.
McMillan
, and
C. A.
Araujo
, “
Switching kinetics of lead zirconate titanate sub-micron thin-film memories
,”
Ferroelectrics
93
,
31
36
(
1989
).
4.
T. P.
Ma
and
J. P.
Han
, “
Why is nonvolatile ferroelectric memory field-effect transistor still elusive?
,”
IEEE Electron Device Lett.
23
,
386
388
(
2002
).
5.
H.
Kohlstedt
 et al., “
Current status and challenges of ferroelectric memory devices
,”
Microelectron. Eng.
80
,
296
304
(
2005
).
6.
Y. S.
Kim
 et al., “
Critical thickness of ultrathin ferroelectric BaTiO3 films
,”
Appl. Phys. Lett.
86
,
102907
(
2005
).
7.
V.
Nagarajan
 et al., “
Misfit dislocations in nanoscale ferroelectric heterostructures
,”
Appl. Phys. Lett.
86
,
192910
(
2005
).
8.
J. F.
Ihlefeld
 et al., “
Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations
,”
J. Am. Ceram. Soc.
99
,
2537
2557
(
2016
).
9.
A.
von Hippel
, “
Piezoelectricity, ferroelectricity, and crystal structure
,”
Z. Phys.
133
,
158
173
(
1952
).
10.
H.
Megaw
,
Ferroelectricity in Crystals
(Metheun & Co.,
1957
).
11.
G.
Burns
,
Solid State Physics
(
Academic Press
,
1985
).
12.
J.
Müller
 et al., “
Ferroelectricity in yttrium-doped hafnium oxide
,”
J. Appl. Phys.
110
,
114113
(
2011
).
13.
S.
Fichtner
,
N.
Wolff
,
F.
Lofink
,
L.
Kienle
, and
B.
Wagner
, “
AlScN: A III-V semiconductor based ferroelectric
,”
J. Appl. Phys.
125
,
114103
(
2019
).
14.
J.
Hayden
 et al., “
Ferroelectricity in boron-substituted aluminum nitride thin films
,”
Phys. Rev. Mater.
5
,
044412
(
2021
).
15.
R. F.
Cava
,
W. F.
Peck
, and
J. J.
Krajewski
, “
Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2
,”
Nature
377
,
215
217
(
1995
).
16.
G. L.
Brennecka
and
D. A.
Payne
, “
Preparation of dense Ta2O5-based ceramics by a coated powder method for enhanced dielectric properties
,”
J. Am. Ceram. Soc.
89
,
2089
2095
(
2006
).
17.
H.
Moriwake
 et al., “
Ferroelectricity in wurtzite structure simple chalcogenide
,”
Appl. Phys. Lett.
104
,
242909
(
2014
).
18.
K.
Koike
 et al., “
Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (1 1 1)-oriented Si substrate toward UV-detector applications
,”
J. Cryst. Growth
278
,
288
292
(
2005
).
19.
X.
Kang
 et al., “
Enhanced dielectric and piezoelectric responses in Zn1−xMgxO thin films near the phase separation boundary
,”
Appl. Phys. Lett.
110
,
042903
(
2017
).
20.
P.
Kumar
,
H. K.
Malik
,
A.
Ghosh
,
R.
Thangavel
, and
K.
Asokan
, “
Bandgap tuning in highly c-axis oriented Zn1−xMgxO thin films
,”
Appl. Phys. Lett.
102
,
221903
(
2013
).
21.
T.
Minemoto
,
T.
Negami
,
S.
Nishiwaki
,
H.
Takakura
, and
Y.
Hamakawa
, “
Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering
,”
Thin Solid Films
372
,
173
176
(
2000
).
22.
A.
Ohtomo
 et al., “
MgxZn1−xO as a II-VI widegap semiconductor alloy
,”
Appl. Phys. Lett.
72
,
2466
(
1998
).
23.
A.
Onodera
,
N.
Tamaki
,
Y.
Kawamura
,
T.
Sawada
, and
H.
Yamashita
, “
Dielectric activity and ferroelectricity in piezoelectric semiconductor Li-doped ZnO
,”
Jpn. J. Appl. Phys.
35
,
5160
5162
(
1996
).
24.
A.
Onodera
,
N.
Tamaki
,
K.
Jin
, and
H.
Yamashita
, “
Ferroelectric properties in piezoelectric semiconductor Zn1−xMxO (M = Li, Mg)
,”
Jpn. J. Appl. Phys.
36
,
6008
(
1997
).
25.
Y.-H.
Lin
,
M.
Ying
,
M.
Li
,
X.
Wang
, and
C.-W.
Nan
, “
Room-temperature ferromagnetic and ferroelectric behavior in polycrystalline ZnO-based thin films
,”
Appl. Phys. Lett.
90
,
222110
(
2007
).
26.
M.
Joseph
,
H.
Tabata
, and
T.
Kawai
, “
Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition
,”
Appl. Phys. Lett.
74
,
2534
2536
(
1999
).
27.
A.
Onodera
and
M.
Takesada
, “
Ferroelectricity in simple binary crystals
,”
Crystals
7
,
232
(
2017
).
28.
N. W.
Emanetoglu
 et al., “
MgxZn1−xO: A new piezoelectric material
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
537
543
(
2003
).
29.
T.
Minemoto
 et al., “
Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering
,”
Thin Solid Films
372
,
173
176
(
2000
).
30.
M.
Rouchdi
,
E.
Salmani
,
B.
Fares
,
N.
Hassanain
, and
A.
Mzerd
, “
Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study
,”
Results Phys.
7
,
620
627
(
2017
).
31.
H.
Hayashi
 et al., “
Zn1−xMgxO second buffer layer of Cu2Sn1−xGexS3 thin-film solar cell for minimizing carrier recombination and open-circuit voltage deficit
,”
Sol. Energy
204
,
769
776
(
2020
).
32.
O.
Gencyilmaz
,
F.
Atay
, and
I.
Akyuz
, “
Fabrication and characterization of Zn1−xMgxO films for photovoltaic application
,” in
Progress in Clean Energy
(
Springer
,
Cham
,
2015
), Vol. 1, pp.
1
968
.
33.
M.
Akiyama
 et al., “
Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
,”
Adv. Mater.
21
,
593
596
(
2009
).
34.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
, and
N.
Kawahara
, “
Influence of oxygen concentration in sputtering gas on piezoelectric response of aluminum nitride thin films
,”
Appl. Phys. Lett.
93
,
021903
(
2008
).
35.
S.-H.
Jang
and
S. F.
Chichibu
, “
Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO
,”
J. Appl. Phys.
112
,
073503
(
2012
).
36.
S.
Gowrishankar
,
L.
Balakrishnan
, and
N.
Gopalakrishnan
, “
Band gap engineering in Zn(1−x)CdxO and Zn(1−x)MgxO thin films by RF sputtering
,”
Ceram. Int.
40
,
2135
2142
(
2014
).
37.
I. S.
Kim
and
B. T.
Lee
, “
Structural and optical properties of single-crystal ZnMgO thin films grown on sapphire and ZnO substrates by RF magnetron sputtering
,”
J. Cryst. Growth
311
,
3618
3621
(
2009
).
38.
M. M.
Fan
 et al., “
Realization of cubic ZnMgO photodetectors for UVB applications
,”
J. Mater. Chem. C
3
,
313
317
(
2015
).
39.
J.-L.
Yang
,
K.-W.
Liu
, and
D.-Z.
Shen
, “
Recent progress of ZnMgO ultraviolet photodetector
,”
Chin. Phys. B
26
,
047308
(
2017
).
40.
R.
Ondo-Ndong
,
H.
Essone-Obame
,
Z. H.
Moussambi
, and
N.
Koumba
, “
Capacitive properties of zinc oxide thin films by radiofrequency magnetron sputtering
,”
J. Theor. Appl. Phys.
12
,
309
317
(
2018
).
41.
J. S.
Thorp
,
N. E.
Rad
,
D.
Evans
, and
C. D. H.
Williams
, “
The temperature dependence of permittivity in MgO and Fe-MgO single crystals
,”
J. Mater. Sci.
21
,
3091
3096
(
1986
).
42.
H.
Ono
,
M.
Nakahata
,
F.
Tsukihashi
, and
N.
Sano
, “
Determination of standard Gibbs energies of formation of MgO, SrO, and BaO
,”
Metall. Trans. B
24
,
487
492
(
1993
).
43.
Y.
Li
and
X.
Wu
, “
The standard molar enthalpies of formation of nano-ZnO particles with different morphologies
,”
J. Nanomater.
2015
,
738909
.
44.
J.
Lettieri
,
J. H.
Haeni
, and
D. G.
Schlom
, “
Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon
,”
J. Vac. Sci. Technol. A
20
,
1332
1340
(
2002
).
45.
S.
Okamura
,
M.
Takaoka
,
T.
Nishida
, and
T.
Shiosaki
, “
Increase in switching charge of ferroelectric SrBi2Ta2O9 thin films with polarization reversal
,”
Jpn. J. Appl. Phys.
39
,
5481
5484
(
2000
).
46.
D.
Zhou
 et al., “
Wake-up effects in Si-doped hafnium oxide ferroelectric thin films
,”
Appl. Phys. Lett.
103
,
192904
(
2015
).
47.
M.
Andritschky
,
F.
Guimarães
, and
V.
Teixeira
, “
Energy deposition and substrate heating during magnetron sputtering
,”
Vacuum
44
,
809
813
(
1993
).
48.
R. H.
Reuss
 et al., “
Macroelectronics: Perspectives on technology and applications
,”
Proc. IEEE
93
,
1239
1256
(
2005
).
49.
V.
Lumelsky
,
M.
Shur
,
S.
Wagner
, and
M.
Ding
, “
Special issue on sensitive skin
,”
Int. J. High Speed Electron. Syst.
10
,
413
(
2000
).
50.
S. R.
Forrest
, “
Electronic appliances on plastic
,”
Nature
428
,
911
918
(
2004
).
51.
J.
Rho
,
S.
Kim
,
N. E.
Lee
,
H. S.
Lee
, and
J. H.
Ahn
, “
PbZrxTi1−xO3 ferroelectric thin-film capacitors for flexible nonvolatile memory applications
,”
IEEE Electron Device Lett.
31
,
1017
1019
(
2010
).
52.
R. D.
Shannon
, and
C. T.
Prewitt
, “
Effective ionic radii in oxides and fluorides
,”
Acta Cryst. B
25
,
925
946
(
1969
).

Supplementary Material

You do not currently have access to this content.