Recently, solution-electrode glow discharges (SEGDs) have shown great utility as ionization sources for mass spectrometry (MS). The solution composition of SEGD electrodes is pivotal to their performance as it influences analyte-ion formation. The performance of electrospray ionization is heavily dictated by spray-solution composition, which can alter ionization efficiency and pathways. While SEGDs produce Taylor cones similar to electrospray ionization, the influence of solution-electrode composition on molecular-ion formation has not been studied. Here, we examine how additives to an atmospheric-pressure solution-cathode glow discharge (SCGD) influence molecular ionization and fragmentation. The impact of several additives to the acidic solution of an SCGD ionization source was evaluated based on mass-spectrometric performance. Addition of methanol increased molecular- and fragment-ion signals for peptide angiotensin II. This effect is likely due to improved desolvation and a greater interaction of analyte molecules with glow-discharge species. Several high-boiling-point reagents were tested to examine changes in the ion signal, the average charge state, and the degree of fragmentation. Overall, these additives inhibited fragmentation but significantly lowered intact molecular-ion signals. Interestingly, loss of fragment ions trended with the boiling point of the reagent used. We hypothesize that analyte molecules become trapped in droplets produced at the solution-cathode surface. These droplets do not fully desolvate before escaping the discharge region, sparing analyte molecules from fragmentation. For low volatility additives, droplets do not desolvate, even as they enter the heated MS, which yields a loss in molecular ions. The changing composition of the SCGD solution alters analytical performance, but also provides insight into analyte ionization and fragmentation processes.

1.
T.
Cserfalvi
,
P.
Mezei
, and
P.
Apai
,
J. Phys. D: Appl. Phys.
26
(
12
),
2184
2188
(
1993
).
2.
M. R.
Webb
and
G. M.
Hieftje
,
Anal. Chem.
81
(
3
),
862
867
(
2009
).
3.
R. K.
Marcus
and
W. C.
Davis
,
Anal. Chem.
73
(
13
),
2903
2910
(
2001
).
4.
A. J.
Schwartz
,
J. T.
Shelley
,
C. L.
Walton
,
K. L.
Williams
, and
G. M.
Hieftje
,
Chem. Sci.
7
(
10
),
6440
6449
(
2016
).
5.
V. V.
Yagov
,
M. L.
Getsina
, and
B. K.
Zuev
,
J. Anal. Chem.
59
,
1037
(
2004
).
6.
B. K.
Zuev
,
V. V.
Yagov
,
M. L.
Getsina
, and
B. A.
Rudenko
,
J. Anal. Chem.
57
(
10
),
907
911
(
2002
).
7.
M. R.
Webb
,
G. C. Y.
Chan
,
F. J.
Andrade
,
G.
Gamez
, and
G. M.
Hieftje
,
J. Anal. At. Spectrom.
21
(
5
),
525
530
(
2006
).
8.
P.
Jamroz
,
K.
Greda
, and
P.
Pohl
,
Trends Anal. Chem.
41
,
105
121
(
2012
).
9.
P.
Jamróz
,
P.
Pohl
, and
W.
Żyrnicki
,
J. Anal. At. Spectrom.
27
(
6
),
1032
(
2012
).
10.
T. A.
Doroski
and
M. R.
Webb
,
Spectrochim. Acta Part B
88
,
40
45
(
2013
).
11.
K.
Greda
,
P.
Jamroz
, and
P.
Pohl
,
J. Anal. At. Spectrom.
28
(
1
),
134
141
(
2012
).
12.
K.
Gręda
,
P.
Jamroz
, and
P.
Pohl
,
Talanta
108
,
74
82
(
2013
).
13.
C. G.
Decker
and
M. R.
Webb
,
J. Anal. At. Spectrom.
31
(
1
),
311
318
(
2016
).
14.
15.
L. X.
Zhang
and
R. K.
Marcus
,
J. Anal. At. Spectrom.
31
(
1
),
145
151
(
2016
).
16.
A. J.
Schwartz
,
K. L.
Williams
,
G. M.
Hieftje
, and
J. T.
Shelley
,
Anal. Chim. Acta
950
,
119
128
(
2017
).
17.
M. R.
Webb
,
F. J.
Andrade
,
G.
Gamez
,
R.
McCrindle
, and
G. M.
Hieftje
,
J. Anal. At. Spectrom.
20
(
11
),
1218
1225
(
2005
).
18.
M. R.
Webb
,
F. J.
Andrade
, and
G. M.
Hieftje
,
Anal. Chem.
79
,
7899
7905
(
2007
).
19.
C. L.
Walton
,
“Development of an atmospheric-pressure solution-cathode glow discharge as an ionization source for mass spectrometry,” Ph.D.
Disseration (Rensselaer Polytechnic Institute, 2019).
20.
A. J.
Schwartz
,
S. J.
Ray
,
E.
Elish
,
A. P.
Storey
,
A. A.
Rubinshtein
,
G. C.
Chan
,
K. P.
Pfeuffer
, and
G. M.
Hieftje
,
Talanta
102
,
26
33
(
2012
).
21.
J. B.
Fenn
,
M.
Mann
,
C. K.
Meng
,
S. F.
Wong
, and
C. M.
Whitehouse
,
Science
246
(
4926
),
64
(
1989
).
22.
M. S.
Wilm
and
M.
Mann
,
Int. J. Mass Spectrom. Ion Processes
136
(
2–3
),
167
180
(
1994
).
23.
D. P.
Little
,
R. A.
Chorush
,
J. P.
Speir
,
M. W.
Senko
,
N. L.
Kelleher
, and
F. W.
McLafferty
,
J. Am. Chem. Soc.
116
(
11
),
4893
4897
(
1994
).
24.
S. A.
McLuckey
,
G. J.
Berkel
, and
G. L.
Glish
,
J. Am. Soc. Mass. Spectrom.
3
(
1
),
60
70
(
1992
).
25.
S.
Zhou
and
K. D.
Cook
,
J. Am. Soc. Mass. Spectrom.
12
(
2
),
206
214
(
2001
).
26.
R. R.
Ogorzalek Loo
,
R.
Lakshmanan
, and
J. A.
Loo
,
J. Am. Soc. Mass. Spectrom.
25
(
10
),
1675
1693
(
2014
).
27.
P. D.
Schnier
,
D. S.
Gross
, and
E. R.
Williams
,
J. Am. Soc. Mass. Spectrom.
6
(
11
),
1086
1097
(
1995
).
28.
P. D.
Schnier
,
W. D.
Price
, and
E. R.
Williams
,
J. Am. Soc. Mass. Spectrom.
7
(
9
),
972
976
(
1996
).
29.
T. M.
Chang
,
J. S.
Prell
,
E. R.
Warrick
, and
E. R.
Williams
,
J. Am. Chem. Soc.
134
(
38
),
15805
15813
(
2012
).
30.
C. N.
Ferguson
,
S. A.
Benchaar
,
Z.
Miao
,
J. A.
Loo
, and
H.
Chen
,
Anal. Chem.
83
(
17
),
6468
6473
(
2011
).
31.
R. B.
Cole
,
J. Mass Spectrom.
35
(
7
),
763
(
2000
).
32.
E.
Honarvar
and
A. R.
Venter
,
J. Am. Soc. Mass. Spectrom.
29
(
12
),
2443
2455
(
2018
).
33.
A. T.
Iavarone
,
J. C.
Jurchen
, and
E. R.
Williams
,
Anal. Chem.
73
(
7
),
1455
1460
(
2001
).
34.
C. J.
Krusemark
,
B. L.
Frey
,
P. J.
Belshaw
, and
L. M.
Smith
,
J. Am. Soc. Mass. Spectrom.
20
(
9
),
1617
1625
(
2009
).
35.
G. E.
Reid
,
J.
Wu
,
P. A.
Chrisman
,
J. M.
Wells
, and
S. A.
McLuckey
,
Anal. Chem.
73
(
14
),
3274
3281
(
2001
).
36.
N. L.
Kelleher
,
Anal. Chem.
76
(
11
),
196 A
203 A
(
2004
).
37.
C. A.
Cassou
,
H. J.
Sterling
,
A. C.
Susa
, and
E. R.
Williams
,
Anal. Chem.
85
(
1
),
138
146
(
2013
).
38.
A. T.
Iavarone
,
J. C.
Jurchen
, and
E. R.
Williams
,
J. Am. Soc. Mass. Spectrom.
11
(
11
),
976
985
(
2000
).
39.
A. T.
Iavarone
and
E. R.
Williams
,
J. Am. Chem. Soc.
125
(
8
),
2319
2327
(
2003
).
40.
M. A.
Zenaidee
and
W. A.
Donald
,
Analyst
140
(
6
),
1894
1905
(
2015
).
41.
H. J.
Sterling
,
M. P.
Daly
,
G. K.
Feld
,
K. L.
Thoren
,
A. F.
Kintzer
,
B. A.
Krantz
, and
E. R.
Williams
,
J. Am. Soc. Mass Spectrom.
21
(
10
),
1762
1774
(
2010
).
42.
Y.
Liu
,
Z.
Miao
,
R.
Lakshmanan
,
R. R. O.
Loo
,
J. A.
Loo
, and
H.
Chen
,
Int. J. Mass Spectrom.
325−327
,
161
166
(
2012
).
43.
A. T.
Iavarone
and
E. R.
Williams
,
Int. J. Mass Spectrom.
219
(
1
),
63
72
(
2002
).
44.
V. H.
Wysocki
,
K. A.
Resing
,
Q.
Zhang
, and
G.
Cheng
,
Methods
35
(
3
),
211
222
(
2005
).
45.
J. V.
Iribarne
,
J. Chem. Phys.
64
(
6
),
2287
(
1976
).
46.
S.
Banerjee
and
S.
Mazumdar
,
Int. J. Anal. Chem.
2012
,
1
40
.
47.
G.
Schmelzeisen-Redeker
,
L.
Bütfering
, and
F. W.
Röllgen
,
Int. J. Mass Spectrom. Ion Processes
90
(
2
),
139
150
(
1989
).
48.
L.
Drahos
,
R. M. A.
Heeren
,
C.
Collette
,
E.
De Pauw
, and
K.
Vékey
,
J. Mass Spectrom.
34
(
12
),
1373
1379
(
1999
).
49.
V.
Gabelica
and
E. D.
Pauw
,
Mass Spectrom. Rev.
24
(
4
),
566
587
(
2005
).
50.
A.
Pak
,
D.
Lesage
,
Y.
Gimbert
,
K.
Vekey
, and
J. C.
Tabet
,
J. Mass Spectrom.
43
(
4
),
447
455
(
2008
).
51.
H. J.
Sterling
and
E. R.
Williams
,
J. Am. Soc. Mass. Spectrom.
20
(
10
),
1933
1943
(
2009
).
52.
S. H.
Lomeli
,
I. X.
Peng
,
S.
Yin
,
R. R.
Ogorzalek Loo
, and
J. A.
Loo
,
J. Am. Soc. Mass. Spectrom.
21
(
1
),
127
131
(
2010
).
53.
C. C.
Going
,
Z.
Xia
, and
E. R.
Williams
,
Analyst
140
(
21
),
7184
7194
(
2015
).
54.
C. C.
Going
and
E. R.
Williams
,
Anal. Chem.
87
(
7
),
3973
3980
(
2015
).
55.
J. S.
Prell
,
J. T.
O’Brien
,
A. I. S.
Holm
,
R. D.
Leib
,
W. A.
Donald
, and
E. R.
Williams
,
J. Am. Chem. Soc.
130
(
38
),
12680
12689
(
2008
).
56.
R. A.
Zubarev
,
D. M.
Horn
,
E. K.
Fridriksson
,
N. L.
Kelleher
,
N. A.
Kruger
,
M. A.
Lewis
,
B. K.
Carpenter
, and
F. W.
McLafferty
,
Anal. Chem.
72
(
3
),
563
573
(
2000
).
57.
A. T.
Iavarone
,
K.
Paech
, and
E. R.
Williams
,
Anal. Chem.
76
(
8
),
2231
2238
(
2004
).
58.
T.
Chakraborty
,
A. I. S.
Holm
,
P.
Hvelplund
,
S. B.
Nielsen
,
J. C.
Poully
,
E. S.
Worm
, and
E. R.
Williams
,
J. Am. Soc. Mass. Spectrom.
17
(
12
),
1675
1680
(
2006
).
59.
K. A.
Douglass
and
A. R.
Venter
,
J. Am. Soc. Mass Spectrom.
23
(
3
),
489
497
(
2012
).
60.
C. A.
Teo
and
W. A.
Donald
,
Anal. Chem.
86
(
9
),
4455
4462
(
2014
).
61.
C. A.
Cassou
and
E. R.
Williams
,
Analyst
139
(
19
),
4810
(
2014
).
62.
H.
Wang
,
G.
Yong
,
S. L.
Brown
,
H. E.
Lee
,
M. A.
Zenaidee
,
C. T.
Supuran
, and
W. A.
Donald
,
Anal. Chim. Acta
1003
,
1
9
(
2018
).
63.
A. C.
Susa
,
D. N.
Mortensen
, and
E. R.
Williams
,
J. Am. Soc. Mass Spectrom.
25
(
6
),
918
927
(
2014
).
64.
J. L.
Sterner
,
M. V.
Johnston
,
G. R.
Nicol
, and
D. P.
Ridge
,
J. Am. Soc. Mass Spectrom.
10
(
6
),
483
491
(
1999
).
65.
H. J.
Sterling
,
A. F.
Kintzer
,
G. K.
Feld
,
C. A.
Cassou
,
B. A.
Krantz
, and
E. R.
Williams
,
J. Am. Soc. Mass Spectrom.
23
(
2
),
191
200
(
2012
).
You do not currently have access to this content.