A radio-frequency (RF) inductively coupled electrothermal plasma thruster operating with argon is experimentally characterized for different mass flow rates, RF powers, and propellant injection configurations. Depending on the propellant mass flow rate, significant neutral gas heating is observed with effective stagnation temperatures around 2000 K (giving a maximum estimated thrust and specific impulse of about 100 mN and 125 s, respectively) for absorbed powers between 300 and 500 W. A self-consistent theoretical discharge model is developed and used to study the basic physics and operation of RF electrothermal thrusters, and predictions of the gas temperature are in good agreement with experimental measurements. The model identifies primary power inefficiencies as electron-neutral excitation losses and neutral gas heat losses to the thruster walls. Both experimental and theoretical results indicate that a relatively high stagnation pressure (of the order of 100 Torr or higher) is critical for high performance. For pressures significantly below this the electron-neutral collisional power transfer is too low to effectively heat the neutral gas.

1.
W. J.
Larson
,
G. N.
Henry
, and
R. W.
Humble
,
Space Propulsion Analysis and Design
(
McGraw-Hill
,
1995
).
2.
G. P.
Sutton
and
O.
Biblarz
,
Rocket Propulsion Elements
(
John Wiley & Sons
,
2016
).
3.
M.
Nishida
,
K.
Kaita
, and
K.
Tanaka
, “Numerical studies of the flow field in a DC arcjet thruster,” in 20th International Electric Propulsion Conference, IEPC1988-105, Garmisch-Partenkirchen, West Germany, 3–6 October (Electric Rocket Propulsion Society, 1988).
4.
M.
Auweter-Kurtz
,
T.
Gblz
,
H.
Habiger
,
F.
Hammer
,
H.
Kurtz
,
M.
Riehle
, and
C.
Sleziona
, “100 kW class hydrogen arcjet thruster,” in 25th International Electric Propulsion Conference, IEPC-97-007, Cleveland, Ohio, USA, 24–28 August (Electric Rocket Propulsion Society, 1997).
5.
W.
Harris
,
E.
O’Hair
,
L.
Hatfield
, and
M.
Kristiansen
, “Cathode erosion research on medium to high power arcjet thrusters” in 23rd AIAA/AIDAA/DGLR/JSASS International Electric Propulsion Conference, IEPC-93-028, Seattle, Washington, USA, 13–16 September (Electric Rocket Propulsion Society, 1993).
6.
S.
Whitehair
,
J.
Asmussen
, and
S.
Nakanishi
,
J. Propul. Power
3
,
136
(
1987
).
7.
J. L.
Power
,
IEEE Trans. Microw. Theory Tech.
40
,
1179
(
1992
).
8.
S. G.
Chianese
and
M. M.
Micci
,
J. Propul. Power
22
,
31
(
2006
).
9.
M.
Micci
,
S.
Bilén
, and
D.
Clemens
,
Prog. Propul. Phys.
1
,
425
(
2009
).
10.
M. M.
Micci
,
Encyclopedia of Aerospace Engineering
(
Wiley
,
2010
).
11.
M. S.
Yildiz
and
M.
Celik
,
AIP Adv.
7
,
045021
(
2017
).
12.
M. S.
Yildiz
and
M.
Celik
,
Plasma Sci. Technol.
21
,
045505
(
2019
).
13.
P.
Proulx
,
J.
Mostaghimi
, and
M. I.
Boulos
,
Plasma Chem. Plasma Process.
7
,
29
(
1987
).
14.
M.
Shigeta
,
T.
Watanabe
, and
H.
Nishiyama
,
Thin Solid Films
457
,
192
(
2004
).
15.
Y.
Leconte
,
M.
Leparoux
,
X.
Portier
, and
N.
Herlin-Boime
,
Plasma Chem. Plasma Process.
28
,
233
(
2008
).
16.
A.
Montaser
,
Inductively Coupled Plasma Mass Spectrometry
(
John Wiley & Sons
,
1998
).
17.
X.
Hou
,
R. S.
Amais
,
B. T.
Jones
, and
G. L.
Donati
,
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
(
John Wiley & Sons
,
2006
), Vol. 1.
18.
M.
Thompson
,
Handbook of Inductively Coupled Plasma Spectrometry
(
Springer Science & Business Media
,
2012
).
19.
M.
Auweter-Kurtz
,
H. L.
Kurtz
, and
S.
Laure
,
J. Propul. Power
12
,
1053
(
1996
).
20.
A.
Cipullo
,
B.
Helber
,
F.
Panerai
,
L.
Zeni
, and
O.
Chazot
,
J. Thermophys. Heat Transf.
28
,
381
(
2014
).
21.
E.
Josyula
,
High-Enthalpy Facilities and Plasma Wind Tunnels for Aerothermodynamics Ground Testing
(
American Institute of Aeronautics and Astronautics
,
2014
).
22.
M.
Boulos
,
J. Therm. Spray Technol.
1
,
33
(
1992
).
23.
M. I.
Boulos
,
P. L.
Fauchais
, and
E.
Pfender
,
Handbook of Thermal Plasmas
(
Springer
,
2019
).
24.
J.
Mostaghimi
and
M. I.
Boulos
,
J. Appl. Phys.
68
,
2643
(
1990
).
25.
M. I.
Boulos
,
High Temp. Mater. Processes: Int. Q. High-Technol. Plasma Processes
1
,
17
(
1997
).
26.
A.
Mironer
and
F.
Hushfar
, “Radio frequency heating of a dense, moving plasma,” in Electric Propulsion Conference, AIAA-1963-45, Colorado Springs, Colorado, USA, 1–13 March (AIAA, 1963).
27.
J.
Pollard
,
D.
Lichtin
, and
R.
Cohen
, “RF discharge electrothermal propulsion-results from a lab-scale thruster,” in 23rd Joint Propulsion Conference, AIAA-1987-2124, San Diego, CA, USA, 29 June–2 July (AIAA, 1987).
28.
L.
Brewer
,
G.
Frind
, and
T.
Karras
, “Preliminary results of a high power RF thruster test,” in 25th AIAA Joint Propulsion Conference, AIAA-1989-2382, Monterey, CA, USA, 12–16 July (AIAA, 1989).
29.
R.
Bond
,
A.
Martin
,
A.
Bond
,
C.
Banks
, and
R.
Eaton
, “An experimental investigation of the performance of a radio-frequency thruster,” in 21st International Electric Propulsion Conference, IEPC-1990-2544, Orlando, FL, USA, 18–20 July (Electric Rocket Propulsion Society, 1990).
30.
M.
Oya
,
N.
Yamamoto
, and
H.
Nakashima
, “Energy balance in a radio frequency electro-thermal thruster with water propellant,” in 31st International Electric Propulsion Conference, IEPC-2009-203, MI, USA, 20–24 September (Electric Rocket Propulsion Society, 2009).
31.
T.
Rutledge
,
M.
Micci
, and
S.
Bilén
, “Design and initial tests of a low power radio-frequency electrothermal thruster,” in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2008-4537, Hartford, CT, USA, 21–23 July (AIAA, 2008).
32.
J. R.
Hopkins
,
M. M.
Micci
, and
S. G.
Bilén
, “Design and testing of a low power radio-frequency electrothermal thruster,” in 31st International Electric Propulsion Conference, IEPC-2009-203, MI, USA, 20–24 September (Electric Rocket Propulsion Society, 2009).
33.
D.
Tsifakis
,
C.
Charles
, and
R.
Boswell
,
Front. Phys.
8
,
34
(
2020
).
34.
R.
Georg
,
A.
Chadwick
,
B.
Dally
, and
G.
Herdrich
,
Vacuum
182
,
109636
(
2020
).
35.
R.
Georg
,
A.
Chadwick
,
B.
Dally
, and
G.
Herdrich
,
Acta Astronaut.
179
,
536
(
2021
).
36.
A.
Chadwick
,
B.
Dally
,
G.
Herdrich
, and
M.
Kim
,
Aeronaut. J.
124
,
151
(
2020
).
37.
J. E.
Brandenburg
,
J.
Kline
, and
D.
Sullivan
,
IEEE Trans. Plasma Sci.
33
,
776
(
2005
).
38.
K. D.
Diamant
,
B. L.
Zeigler
, and
R. B.
Cohen
,
J. Propul. Power
23
,
27
(
2007
).
39.
T.
Fujino
and
M.
Yamauchi
,
J. Appl. Phys.
128
,
173302
(
2020
).
40.
K.
Takahashi
,
T.
Lafleur
,
C.
Charles
,
P.
Alexander
,
R.
Boswell
,
M.
Perren
,
R.
Laine
,
S.
Pottinger
,
V.
Lappas
,
T.
Harle
et al.,
Appl. Phys. Lett.
98
,
141503
(
2011
).
41.
K.
Takahashi
,
T.
Lafleur
,
C.
Charles
,
P.
Alexander
, and
R. W.
Boswell
,
Phys. Rev. Lett.
107
,
235001
(
2011
).
42.
T.
Lafleur
,
Phys. Plasmas
21
,
043507
(
2014
).
43.
E.
Ahedo
and
J.
Navarro-Cavallé
,
Phys. Plasmas
20
,
043512
(
2013
).
44.
K.
Takahashi
,
Rev. Mod. Plasma Phys.
3
,
3
(
2019
).
45.
F.
Cannat
,
T.
Lafleur
,
J.
Jarrige
,
P.
Chabert
,
P.-Q.
Elias
, and
D.
Packan
,
Phys. Plasmas
22
,
053503
(
2015
).
46.
T.
Lafleur
,
F.
Cannat
,
J.
Jarrige
,
P.
Elias
, and
D.
Packan
,
Plasma Sources Sci. Technol.
24
,
065013
(
2015
).
47.
B.
Wachs
and
B.
Jorns
,
Plasma Sources Sci. Technol.
29
,
045002
(
2020
).
48.
A. J.
Sheppard
and
J. M.
Little
,
Plasma Sources Sci. Technol.
29
,
045007
(
2020
).
49.
T.
Lafleur
,
K.
Takahashi
,
C.
Charles
, and
R.
Boswell
,
Phys. Plasmas
18
,
080701
(
2011
).
50.
A.
Fruchtman
,
IEEE Trans. Plasma Sci.
36
,
403
(
2008
).
51.
A.
Fruchtman
,
K.
Takahashi
,
C.
Charles
, and
R.
Boswell
,
Phys. Plasmas
19
,
033507
(
2012
).
52.
M.
Martinez-Sanchez
,
J.
Navarro-Cavalle
, and
E.
Ahedo
,
Phys. Plasmas
22
,
053501
(
2015
).
53.
K.
Takahashi
,
T.
Lafleur
,
C.
Charles
,
P.
Alexander
, and
R. W.
Boswell
,
Phys. Plasmas
19
,
083509
(
2012
).
54.
J. D.
Anderson
, Jr.,
Fundamentals of Aerodynamics
(
Tata McGraw-Hill Education
,
2010
).
55.
T.
Lafleur
,
C.
Charles
, and
R.
Boswell
,
J. Phys. D: Appl. Phys.
44
,
055202
(
2011
).
56.
A.
Murphy
,
Phys. Rev. E
55
,
7473
(
1997
).
57.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
58.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
59.
J.
Gudmundsson
,
T.
Kimura
, and
M.
Lieberman
,
Plasma Sources Sci. Technol.
8
,
22
(
1999
).
60.
A.
Gutsol
,
J.
Larjo
, and
R.
Hernberg
,
Plasma Chem. Plasma Process.
22
,
351
(
2002
).
61.
C.
Scharwitz
and
T.
Makabe
,
J. Appl. Phys.
106
,
113304
(
2009
).
62.
A.
Bogaerts
,
R.
Gijbels
, and
J.
Vlcek
,
J. Appl. Phys.
84
,
121
(
1998
).
You do not currently have access to this content.