The fundamental sensitivity limit of atomic force microscopy is strongly correlated to the thermal noise of cantilever oscillation. A method to suppress this unwanted noise is to reduce the bandwidth of the measurement, but this approach is limited by the speed of the measurement and the width of the cantilever resonance, commonly defined through the quality factor Q. However, it has been shown that optomechanical resonances in interferometers might affect cantilever oscillations resulting in an effective quality factor Qeff. When the laser power is sufficiently increased cantilever oscillations might even reach the regime of self-oscillation. In this self-oscillation state, the noise of the system is partially determined by the interaction with laser light far from equilibrium. Here, we show and discuss how tuning of laser power leads to nonlinear optomechanical effects that can dramatically increase the effective quality factor of the cantilever leading to out-of-equilibrium noise. We model the effects using a fourth order nonlinearity of the damping coefficient.

1.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
3.
S.
Kitamura
and
M.
Iwatsuki
,
Jpn. J. Appl. Phys.
34
,
L145
(
1995
).
4.
T. R.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
(
1991
).
5.
U.
Gysin
,
S.
Rast
,
P.
Ruff
,
E.
Meyer
,
D. W.
Lee
,
P.
Vettiger
, and
C.
Gerber
,
Phys. Rev. B
69
,
045403
(
2004
).
6.
J.
Lubbe
,
L.
Troger
,
S.
Torbrugge
,
R.
Bechstein
,
C.
Richter
,
A.
Kühnle
, and
M.
Reichling
,
Meas. Sci. Technol.
21
,
125501
(
2010
).
7.
Y.
Martin
,
C. C.
Williams
, and
H. K.
Wickramasinghe
,
J. Appl. Phys.
61
,
4723
(
1987
).
8.
C.
Schönenberger
and
S. F.
Alvarado
,
Rev. Sci. Instrum.
60
,
3131
(
1989
).
9.
D.
Rugar
,
H. J.
Mamin
, and
P.
Guethner
,
Appl. Phys. Lett.
55
,
2588
(
1989
).
10.
A.
Moser
,
H.-J.
Hug
,
T.
Jung
,
U. D.
Schwarz
, and
H.-J.
Güntherodt
,
Meas. Sci. Technol.
4
,
769
(
1993
).
11.
T. J.
Kippenberg
and
K. J.
Vahala
,
Science
321
,
1172
(
2008
).
12.
S.
Gigan
,
H. R.
Böhm
,
M.
Paternostro
,
F.
Blaser
,
G.
Langer
,
J. B.
Hertzberg
,
K. C.
Schwab
,
D.
Bäuerle
,
M.
Aspelmeyer
, and
A.
Zeilinger
,
Nature
444
,
67
(
2006
).
13.
F.
Pan
,
K.
Cui
,
G.
Bai
,
F.
Liu
,
W.
Zhang
, and
Y.
Huang
,
ACS Photonics
5
,
4164
(
2018
).
14.
A.
von Schmidsfeld
and
M.
Reichling
,
Appl. Phys. Lett.
107
,
123111
(
2015
).
15.
A.
Dorsel
,
J. D.
McCullen
,
P.
Meystre
,
E.
Vignes
, and
H.
Walther
,
Appl. Phys. Lett.
51
,
1550
(
1983
).
16.
Y. J.
Rao
and
B.
Culshaw
,
Electron. Lett.
27
,
1699
(
1991
).
17.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
,
Rev. Mod. Phys.
86
,
1391
(
2014
).
18.
M.
Metcalfe
,
Appl. Phys. Rev.
1
,
031105
(
2014
).
19.
H.
Hölscher
,
P.
Milde
,
U.
Zerweck
,
L. M.
Eng
, and
R.
Hoffmann
,
Appl. Phys. Lett.
94
,
0223514
(
2009
).
20.
S.
Zaitsev
,
O.
Gottlieb
, and
E.
Buks
,
Nonlinear Dyn.
69
,
1589
(
2012
).
21.
F.
Marquardt
,
J. G. E.
Harris
, and
S. M.
Girvin
,
Phys. Rev. Lett.
96
,
103901
(
2006
).
22.
H.
Fu
,
C.
Liu
,
Y.
Liu
,
J.
Chu
, and
G.
Cao
,
Appl. Phys. Lett.
99
,
173501
(
2011
).
23.
J. M. L.
Miller
,
A.
Ansari
,
D. B.
Heinz
,
Y.
Chen
,
I. B.
Flader
,
D. D.
Shin
,
L. G.
Villanueva
, and
T. W.
Kenny
,
Appl. Phys. Rev.
5
,
041307
(
2018
).
24.
M.
Poot
and
H. S. J.
van der Zant
,
Phys. Rep.
511
,
273
(
2012
).
25.
G.
Fläschner
,
K.
Ruschmeier
,
A.
Schwarz
,
M. R.
Bakhtiari
,
M.
Thorwart
, and
R.
Wiesendanger
,
Appl. Phys. Lett.
106
,
123102
(
2015
).
26.
J.
Chan
,
T. P. M.
Alegre
,
A. H.
Safavi-Naeini
,
J. T.
Hill
,
A.
Krause
,
S.
Gröblacher
,
M.
Aspelmeyer
, and
O.
Painter
,
Nature
478
,
89
(
2011
).
27.
A.
Schliesser
,
R.
Rivière
,
G.
Anetsberger
,
O.
Arcizet
, and
T. J.
Kippenberg
,
Nat. Phys.
4
,
415
(
2008
).
28.
H. J.
Hug
,
B.
Stiefel
,
P. J. A.
van Schendel
,
A.
Moser
,
S.
Martin
, and
H.-J.
Güntherodt
,
Rev. Sci. Instrum.
70
,
3625
(
1999
).
29.
O.
Marti
,
A.
Ruf
,
M.
Hipp
,
H.
Bielefeldt
,
J.
Colchero
, and
J.
Mlynek
,
Ultramicroscopy
42
,
345
(
1992
).
30.
O.
Svelto
,
Principles of Lasers
, 5th ed. (
Springer
,
New York
,
2010
).
31.
H.
Hölscher
and
U. D.
Schwarz
,
Int. J. Nonlinear Mech.
42
,
608
(
2007
).
32.
A.
Eichler
,
J.
Moser
,
J.
Chaste
,
M.
Zdrojek
,
I.
Wilson-Rae
, and
A.
Bachtold
,
Nat. Nanotechnol.
6
,
339
(
2011
).
33.
M.
Vogel
,
C.
Mooser
,
K.
Karrai
, and
R. J.
Warburton
,
Appl. Phys. Lett.
83
,
1337
(
2003
).
34.
S.
Zaitsev
,
A. K.
Pandey
,
O.
Shtempluck
, and
E.
Buks
,
Phys. Rev. E
84
,
046605
(
2011
).
35.
J.
Moser
,
A.
Eichler
,
J.
Güttinger
,
M. I.
Dykman
, and
A.
Bachtold
,
Nat. Nanotechnol.
9
,
1007
(
2014
).
36.
V. P.
Adiga
,
B.
Ilic
,
R. A.
Barton
,
I.
Wilson-Rae
,
H. G.
Craighead
, and
J. M.
Parpia
,
J. Appl. Phys.
112
,
4323
(
2012
).
37.
M.
Rossi
,
D.
Mason
,
J.
Chen
,
Y.
Tsaturyan
, and
A.
Schliesser
,
Nature
563
,
53
(
2018
).
38.
O. E.
Dagdeviren
,
J.
Götzen
,
H.
Hölscher
,
E. I.
Altman
, and
U. D.
Schwarz
,
Nanotechnology
27
,
065703
(
2016
).
39.
R.
Hoffmann
,
A.
Baratoff
,
H. J.
Hug
,
H. R.
Hidber
,
H. V.
Löhneysen
, and
H.-J.
Güntherodt
,
Nanotechnology
18
,
395503
(
2007
).
40.
J.
Lübbe
,
M.
Temmen
,
S.
Rode
,
P.
Rahe
,
A.
Kühnle
, and
M.
Reichling
,
Beilstein J. Nanotechnol.
4
,
32
(
2013
).
41.
D.
Rugar
and
P.
Grütter
,
Phys. Rev. Lett.
67
,
699
(
1991
).
42.
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Rev. Sci. Instrum.
82
,
033702
(
2011
).
43.
J.
Tamayo
,
J. Appl. Phys.
97
,
044903
(
2005
).
44.
L.
Tröger
and
M.
Reichling
,
Appl. Phys. Lett.
97
,
213105
(
2010
).
45.
Z.
Schumacher
,
A.
Spielhofer
,
Y.
Miyahara
, and
P.
Grutter
,
Appl. Phys. Lett.
110
,
053111
(
2017
).
You do not currently have access to this content.