A thermoelectric module is composed of n- and p-type materials, and its performance is evaluated by the materials' dimensionless figure of merit, zT, which is expected to be as high as possible. Moreover, because a thermoelectric module is designed to operate in various temperature ranges, the rate of each material's deformation in response to a change in temperature, also called thermal expansion, should be considered. If n- and p-type materials in a thermoelectric module have a too large difference in the thermal expansion, it could lead to risks of several device failures and reduction in performance over time. Thus, to achieve practical use, not only zT but also the compatibility of n- and p-type materials are also crucial parameters. In this study, we demonstrated a technique used to minimize the difference of thermal expansion rate between n-type Mg2Si and p-type higher manganese silicide, which are the promising materials used for a practical thermoelectric module.

1.
CRC Handbook of Thermoelectrics
, edited by
D. M.
Rowe
(
CRC
,
Boca Raton
,
1995
).
2.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
114
(
2008
).
3.
J. P.
Heremans
,
V.
Jovovic
,
E.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
,
554
557
(
2008
).
4.
Y.
Pei
,
X.
Shi
,
A.
Lalonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
69
(
2011
).
5.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y. C.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D. Z.
Wang
,
A.
Muto
,
D.
Vashaee
,
X. Y.
Chen
,
J. M.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Science
320
,
634
638
(
2008
).
6.
L. D.
Zhao
,
G.
Tan
,
S.
Hao
,
J.
He
,
Y.
Pei
,
H.
Chi
,
H.
Wang
,
S.
Gong
,
H.
Xu
,
V. P.
Dravid
,
C.
Uher
,
G. J.
Snyder
,
C.
Wolverton
, and
M. G.
Kanatzidis
,
Science
351
,
141
144
(
2016
).
7.
V. K.
Zaitsev
,
M. I.
Fedorov
,
E. A.
Gurieva
,
I. S.
Eremin
,
P. P.
Konstantinov
,
A. Y.
Samunin
, and
M. V.
Vedernikov
,
Phys. Rev. B
74
,
045207
(
2006
).
8.
W.
Liu
,
X.
Tan
,
K.
Yin
,
H.
Liu
,
X.
Tang
,
J.
Shi
,
Q.
Zhang
, and
C.
Uher
,
Phys. Rev. Lett.
108
,
166601
(
2012
).
9.
Y.
Kikuchi
,
Y.
Miyazaki
,
Y.
Saito
,
K.
Hayashi
,
K.
Yubuta
, and
T.
Kajitani
,
Jpn. J. Appl. Phys.
51
,
085801
(
2012
).
10.
I.
Aoyama
,
H.
Kaibe
,
L.
Rauscher
,
T.
Kanda
,
M.
Mukoujima
,
S.
Sano
, and
T.
Tsuji
,
Jpn. J. Appl. Phys.
44
,
4275
4281
(
2005
).
11.
Y.
Kikuchi
,
T.
Nakajo
,
K.
Hayashi
, and
Y.
Miyazaki
,
J. Alloys Compd.
616
,
263
267
(
2014
).
12.
M.
Imai
,
Y.
Isoda
, and
H.
Udono
,
Intermetallics
67
,
75
80
(
2015
).
13.
P. S.
Turner
,
J. Res. Natl. Bur. Stand.
37
,
239
250
(
1946
).
14.
Y.
Okada
and
Y.
Tokumaru
,
J. Appl. Phys.
56
,
314
320
(
1984
).
15.
S.
Chen
,
Y.
Chen
,
S.
Ohno
,
L.
Xu
,
W.
Fan
,
L.
Xue
,
M.
Ferhat
, and
Y.
Wu
,
Phys. Status Solidi A
217
,
1901035
(
2020
).
16.
J.
Tani
and
H.
Kido
,
Physica B
364
,
218
224
(
2005
).
17.
A.
Yusufu
,
K.
Kurosaki
,
Y.
Miyazaki
,
M.
Ishimaru
,
A.
Kosuga
,
Y.
Ohishi
,
H.
Muta
, and
S.
Yamanaka
,
Nanoscale
6
,
13921
(
2014
).
You do not currently have access to this content.