Even though the interaction of blast waves with dense particle distributions is ubiquitous in nature and in industry, the underlying physics of the multiphase system evolution is not clearly understood. A canonical multiphase system composed of an embedded monodisperse distribution of spherical particles in a spherical, high-energy gaseous charge is studied numerically using an Eulerian–Lagrangian approach to elucidate the role of non-dilute particle effects on the dynamics of the two-phase flow system. The direct simulation Monte Carlo method is modified to model inelastic particle–particle collisions and to model the gaseous flow inter-leaving through complex structures of monodisperse dense distributions of spherical particles to obtain parameters that are fit to semi-empirical particle cloud drag laws that account for aerodynamic interactions. The study reveals that inter-particle collisions decrease the total particle kinetic energy at early stages of the particle-laden blast wave system evolution, but near-particle interaction increases the particle kinetic energy at this stage. In contrast, at later stages of evolution, collisions tend to retain more kinetic energy, while the aerodynamic interactions tend to dissipate particle kinetic energy.

1.
K.
Isensee
,
L.
Rudnick
,
T.
DeLaney
,
J.
Smith
,
J.
Rho
,
W. T.
Reach
,
T.
Kozasa
, and
H.
Gomez
, “
The three-dimensional structure of interior ejecta in Cassiopeia A at high spectral resolution
,”
Astrophys. J.
725
,
2059
(
2010
).
2.
T.
Inoue
,
R.
Yamazaki
, and
S.-I.
Inutsuka
, “
Turbulence and magnetic field amplification in supernova remnants: Interactions between a strong shock wave and multiphase interstellar medium
,”
Astrophys. J.
695
,
825
(
2009
).
3.
K.
Chojnicki
,
A. B.
Clarke
, and
J. C.
Phillips
, “
A shock-tube investigation of the dynamics of gas-particle mixtures: Implications for explosive volcanic eruptions
,”
Geophys. Res. Lett.
33
,
L15309
, https://doi.org/10.1029/2006GL026414 (
2006
).
4.
S. W.
Kieffer
, “
Blast dynamics at Mount St Helens on 18 May 1980
,”
Nature
291
,
568
570
(
1981
).
5.
A. B.
Clarke
, “Unsteady explosive activity: Vulcanian eruptions,” in Modeling Volcanic Processes: The Physics and Mathematics of Volcanism, edited by S. A. Fagents, K. P. G. Tracy, and M. C. L. Rosaly (Cambridge University Press, Cambridge, 2013), pp. 129–152.
6.
Y.
Formenti
,
T.
Druitt
, and
K.
Kelfoun
, “
Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis
,”
Bull. Volcanol.
65
,
587
605
(
2003
).
7.
T.
Abbasi
and
S.
Abbasi
, “
Dust explosions—Cases, causes, consequences, and control
,”
J. Hazard. Mater.
140
,
7
44
(
2007
).
8.
R. K.
Eckhoff
, “
Dust explosion prevention and mitigation, status and developments in basic knowledge and in practical application
,”
Int. J. Chem. Eng.
2009
,
569825
(
2009
).
9.
R.
Eckhoff
, “
Current status and expected future trends in dust explosion research
,”
J. Loss Prev. Process Ind.
18
,
225
237
(
2005
).
10.
Q.
Pontalier
,
J.
Loiseau
,
S.
Goroshin
, and
D.
Frost
, “
Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids
,”
Shock Waves
28
,
489
511
(
2018
).
11.
D. L.
Frost
,
Y.
Grégoire
,
O.
Petel
,
S.
Goroshin
, and
F.
Zhang
, “
Particle jet formation during explosive dispersal of solid particles
,”
Phys. Fluids
24
,
091109
(
2012
).
12.
K.
Balakrishnan
,
D.
Nance
, and
S.
Menon
, “
Simulation of impulse effects from explosive charges containing metal particles
,”
Shock Waves
20
,
217
239
(
2010
).
13.
Y.
Aglitskiy
,
A.
Velikovich
,
M.
Karasik
,
N.
Metzler
,
S.
Zalesak
,
A.
Schmitt
,
L.
Phillips
,
J.
Gardner
,
V.
Serlin
,
J.
Weaver
et al., “
Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions
,”
Philos. Trans. R. Soc. A
368
,
1739
1768
(
2010
).
14.
H. L.
Brode
, “Theoretical solutions of spherical shock-tube blasts” Technical Report No. RM-1974 (RAND); AD-206491, RAND Corp., Santa Monica, California, 1957.
15.
Z.
Zarei
and
D.
Frost
, “
Simplified modeling of blast waves from metalized heterogeneous explosives
,”
Shock Waves
21
,
425
438
(
2011
).
16.
D.
Boyer
, “
An experimental study of the explosion generated by a pressurized sphere
,”
J. Fluid Mech.
9
,
401
429
(
1960
).
17.
H. L.
Brode
, “
Blast wave from a spherical charge
,”
Phys. Fluids
2
,
217
229
(
1959
).
18.
H. L.
Brode
, “
Numerical solutions of spherical blast waves
,”
J. Appl. Phys.
26
,
766
775
(
1955
).
19.
T.
Liu
,
B.
Khoo
, and
K.
Yeo
, “
The numerical simulations of explosion and implosion in air: Use of a modified Harten’s TVD scheme
,”
Int. J. Numer. Methods Fluids
31
,
661
680
(
1999
).
20.
M. P.
Friedman
, “
A simplified analysis of spherical and cylindrical blast waves
,”
J. Fluid Mech.
11
,
1
15
(
1961
).
21.
J.
McFadden
, “
Initial behavior of a spherical blast
,”
J. Appl. Phys.
23
,
1269
1275
(
1952
).
22.
T. G.
Theofanous
and
C.-H.
Chang
, “
The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward
,”
Int. J. Multiphase Flow
89
,
177
206
(
2017
).
23.
A.
Marayikkottu Vijayan
,
S. S.
Sawant
,
P.
Rao
, and
D. A.
Levin
, “Study of inert simulated particle transportation in a moving shock/pressure wave generated by electrostatic discharges,” AIAA Paper No. 2019-0631, 2019, p. 0631.
24.
A.
Marayikkottu Vijayan
,
S. S.
Sawant
,
D. A.
Levin
,
C.
Huang
,
M.
Schoenitz
, and
E.
Dreizin
, “Comparison of numerical simulations of inert particle transport in an electrostatic discharge with experimental results,” AIAA Paper No. 2020-1798, 2020, p. 1798.
25.
Y.
Ling
,
J.
Wagner
,
S.
Beresh
,
S.
Kearney
, and
S.
Balachandar
, “
Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments
,”
Phys. Fluids
24
,
113301
(
2012
).
26.
G. S.
Shallcross
and
J.
Capecelatro
, “A parametric study of particle-laden shock tubes using an Eulerian-Lagrangian framework,” AIAA Paper No. 2018-2080, 2018, p. 2080.
27.
P.
Kosinski
and
A. C.
Hoffmann
, “
Modelling of dust lifting using the Lagrangian approach
,”
Int. J. Multiphase Flow
31
,
1097
1115
(
2005
).
28.
Y. A.
Gosteev
and
A.
Fedorov
, “
Calculation of dust lifting by a transient shock wave
,”
Combust. Explos. Shock Waves
38
,
322
326
(
2002
).
29.
A. V.
Marayikkottu
,
S. S.
Sawant
,
D. A.
Levin
,
C.
Huang
,
M.
Schoenitz
, and
E. L.
Dreizin
, “
Study of particle lifting mechanisms in an electrostatic discharge plasma
,”
Int. J. Multiphase Flow
137
,
103564
(
2021
).
30.
Y.
Ling
,
A.
Haselbacher
, and
S.
Balachandar
, “
Importance of unsteady contributions to force and heating for particles in compressible flows: Part 1: Modeling and analysis for shock–particle interaction
,”
Int. J. Multiphase Flow
37
,
1026
1044
(
2011
).
31.
Y.
Ling
,
A.
Haselbacher
, and
S.
Balachandar
, “
Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: Application to particle dispersal by blast waves
,”
Int. J. Multiphase Flow
37
,
1013
1025
(
2011
).
32.
Y.
Ling
and
S.
Balachandar
, “
Simulation and scaling analysis of a spherical particle-laden blast wave
,”
Shock Waves
28
,
545
558
(
2018
).
33.
N. V.
Brilliantov
and
T.
Pöschel
,
Kinetic Theory of Granular Gases
(
Oxford University Press
,
2010
).
34.
I.
Vinkovic
,
C.
Aguirre
,
M.
Ayrault
, and
S.
Simoëns
, “
Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer
,”
Boundary Layer Meteorol.
121
,
283
(
2006
).
35.
A. K.
Chinnappan
and
R.
Kumar
, “
Modeling of high speed gas-granular flow over a 2D cylinder in the direct simulation Monte-Carlo framework
,”
Granular Matter
18
,
35
(
2016
).
36.
P. A.
Cundall
and
O. D.
Strack
, “
A discrete numerical model for granular assemblies
,”
Geotechnique
29
,
47
65
(
1979
).
37.
S.
Harris
and
D.
Crighton
, “
Solitons, solitary waves, and voidage disturbances in gas-fluidized beds
,”
J. Fluid Mech.
266
,
243
276
(
1994
).
38.
R. J.
Hill
,
D. L.
Koch
, and
A. J. C.
Ladd
, “
The first effects of fluid inertia on flows in ordered and random arrays of spheres
,”
J. Fluid Mech.
448
,
213
241
(
2001
).
39.
M. A.
van der Hoef
,
R.
Beetstra
, and
J.
Kuipers
, “
Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres: Results for the permeability and drag force
,”
J. Fluid Mech.
528
,
233
(
2005
).
40.
R.
Beetstra
,
M. A.
van der Hoef
, and
J.
Kuipers
, “
Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres
,”
AIChE J.
53
,
489
501
(
2007
).
41.
S.
Tenneti
,
R.
Garg
, and
S.
Subramaniam
, “
Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres
,”
Int. J. Multiphase Flow
37
,
1072
1092
(
2011
).
42.
M.
Mehrabadi
,
S.
Tenneti
,
R.
Garg
, and
S.
Subramaniam
, “
Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: Fixed particle assemblies and freely evolving suspensions
,”
J. Fluid Mech.
770
,
210
(
2015
).
43.
Z.
Hosseinzadeh-Nik
,
S.
Subramaniam
, and
J. D.
Regele
, “
Investigation and quantification of flow unsteadiness in shock-particle cloud interaction
,”
Int. J. Multiphase Flow
101
,
186
201
(
2018
).
44.
A. N.
Osnes
,
M.
Vartdal
,
M. G.
Omang
, and
B. A. P.
Reif
, “
Computational analysis of shock-induced flow through stationary particle clouds
,”
Int. J. Multiphase Flow
114
,
268
286
(
2019
).
45.
Y.
Mehta
,
T.
Jackson
, and
S.
Balachandar
, “
Pseudo-turbulence in inviscid simulations of shock interacting with a bed of randomly distributed particles
,”
Shock Waves
30
,
49
62
(
2020
).
46.
R.
Jambunathan
and
D. A.
Levin
, “
Chaos: An octree-based PIC-DSMC code for modeling of electron kinetic properties in a plasma plume using MPI-CUDA parallelization
,”
J. Comput. Phys.
373
,
571
604
(
2018
).
47.
B.
Fryxell
,
K.
Olson
,
P.
Ricker
,
F. X.
Timmes
,
M.
Zingale
,
D. Q.
Lamb
,
P.
MacNeice
,
R.
Rosner
,
J. W.
Truran
, and
H.
Tufo
, “
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J. Suppl.
131
,
273
(
2000
).
48.
D.
Frost
, “
Heterogeneous/particle-laden blast waves
,”
Shock Waves
28
,
439
449
(
2018
).
49.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2011
).
50.
L.
Sternin
,
B.
Maslov
,
A.
Shraiber
, and
A.
Podvysotskii
, “
Two-phase mono-and polydisperse gas flows containing particles
,”
Moscow Izdatel Mashinostroenie
,
176
(
1980
).
51.
W.
Sutherland
, “
LII. the viscosity of gases and molecular force
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
52.
E.
Loth
, “Compressibility and rarefaction effects on drag of a spherical particle,” AIAA Volume No. 46, Paper No. 9, 2008, pp. 2219–2228.
53.
T.
Nagata
,
T.
Nonomura
,
S.
Takahashi
, and
K.
Fukuda
, “
Direct numerical simulation of subsonic, transonic and supersonic flow over an isolated sphere up to a Reynolds number of 1000
,”
J. Fluid Mech.
904
,
A36
(
2020
).
54.
P.
Haff
, “
Grain flow as a fluid-mechanical phenomenon
,”
J. Fluid Mech.
134
,
401
430
(
1983
).
55.
R.
Jambunathan
and
D. A.
Levin
, “
Grid-free octree approach for modeling heat transfer to complex geometries
,”
J. Thermophys. Heat Transf.
30
,
379
393
(
2016
).
56.
R.
Di Felice
, “
The voidage function for fluid-particle interaction systems
,”
Int. J. Multiphase Flow
20
,
153
159
(
1994
).
57.
Z.
Naumann
and
L.
Schiller
, “
A drag coefficient correlation
,”
Z. Ver. Deutsch. Ing.
77
,
318
320
(
1935
).
58.
P. L.
Roe
, “
Approximate riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
59.
P.
MacNeice
,
K. M.
Olson
,
C.
Mobarry
,
R.
De Fainchtein
, and
C.
Packer
, “
Paramesh: A parallel adaptive mesh refinement community toolkit
,”
Comput. Phys. Commun.
126
,
330
354
(
2000
).
60.
T.
Nagata
,
T.
Nonomura
,
S.
Takahashi
,
Y.
Mizuno
, and
K.
Fukuda
, “
Direct numerical simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300 under subsonic to supersonic conditions
,”
Int. J. Heat. Mass. Transf.
120
,
284
299
(
2018
).
61.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
1985
).
You do not currently have access to this content.