Terahertz metamaterials have received significant attention for their unprecedented abilities to modulate the terahertz wave effectively. The traditional manufacturing of terahertz metamaterials has been mainly relying on the micro–nanofabrication technique due to the micro-scale characteristic size of the unit cell. However, the fabrication usually involves multi-step and time-consuming processes, as well as expensive equipment. To overcome these shortcomings, here we used projection micro-stereolithography 3D printing followed by the magnetron sputtering to additively manufacture terahertz metamaterials. A vertical split-ring resonator-based metamaterial absorber is taken into account as the prototype to demonstrate the simplicity of the proposed fabrication technique. Both terahertz time-domain spectroscopy measurement and simulation indicate that the 3D printed absorber has a near-unity narrow-band absorption peak at 0.8 THz. The absorption mechanism is clearly clarified by the coupled mode and impedance matching theory and electromagnetic field distribution at the resonant frequency. A 3D printed narrow-band absorber also demonstrates great potential for highly efficient biosensing of lactose and galactose. It can be estimated that 3D printing provides an easy-going fabrication approach for THz metamaterials and shed light on its foreseeable application for the versatile design and manufacturing of functional THz devices.

1.
S.
Keren-Zur
,
M.
Tal
,
S.
Fleischer
,
D. M.
Mittleman
, and
T.
Ellenbogen
, “
Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces
,”
Nat. Commun.
10
(
1
),
1778
(
2019
).
2.
J.
Ma
 et al, “
Security and eavesdropping in terahertz wireless links
,”
Nature
563
(
7729
),
89
93
(
2018
).
3.
V.
Bianchi
 et al, “
Terahertz saturable absorbers from liquid phase exfoliation of graphite
,”
Nat. Commun.
8
,
15763
(
2017
).
4.
C.
Zhang
 et al, “
Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor
,”
Appl. Phys. Lett.
108
(
24
),
241105
(
2016
).
5.
L.
Qi
,
C.
Liu
, and
S. M.
Ali Shah
, “
A broad dual-band switchable graphene-based terahertz metamaterial absorber
,”
Carbon
153
,
179
188
(
2019
).
6.
P.
Yu
 et al, “
Broadband metamaterial absorbers
,”
Adv. Opt. Mater.
7
(
3
),
1800995
(
2018
).
7.
H.
Liu
,
Z.-H.
Wang
,
L.
Li
,
Y.-X.
Fan
, and
Z.-Y.
Tao
, “
Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber
,”
Sci. Rep.
9
(
1
),
5751
(
2019
).
8.
Y.
Wu
 et al, “
A broadband metamaterial absorber design using characteristic modes analysis
,”
J. Appl. Phys.
129
(
13
),
134902
(
2021
).
9.
M.
Beruete
and
I.
Jáuregui-López
, “
Terahertz sensing based on metasurfaces
,”
Adv. Opt. Mater.
8
(
3
),
1900721
(
2020
).
10.
K.
Shih
,
P.
Pitchappa
,
L.
Jin
,
C.-H.
Chen
,
R.
Singh
, and
C.
Lee
, “
Nanofluidic terahertz metasensor for sensing in aqueous environment
,”
Appl. Phys. Lett.
113
(
7
),
071105
(
2018
).
11.
J.
Ge
 et al, “
Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance
,”
Opt. Express
28
(
21
),
31781
31795
(
2020
).
12.
X.-G.
Yin
,
M.-Q.
Wu
,
Y.-­W.
Liu
, and
C.-P.
Huang
, “
A planar metamaterial based on metallic rectangular-ring pair for narrow electromagnetically induced transparency-like effect
,”
J. Appl. Phys.
128
(
6
),
065105
(
2020
).
13.
M.
Manjappa
,
Y. K.
Srivastava
,
A.
Solanki
,
A.
Kumar
,
T. C.
Sum
, and
R.
Singh
, “
Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices
,”
Adv. Mater.
29
(
32
),
1605881
(
2017
).
14.
X.
Zhao
 et al, “
Nonlinear terahertz metamaterial perfect absorbers using GaAs
,”
Photonics Res.
4
(
3
),
A16
A21
(
2016
).
15.
S.
Fang
 et al, “
Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials
,”
J. Appl. Phys.
121
(
3
),
033103
(
2017
).
16.
Z.
Jiang
,
Q.
Liang
,
Z.
Li
,
P.
Lv
,
T.
Chen
, and
D.
Li
, “
Experimental demonstration of a 3D-printed arched metasurface carpet cloak
,”
Adv. Opt. Mater.
7
(
15
),
1900475
(
2019
).
17.
H.
Zhang
 et al, “
High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation
,”
Adv. Opt. Mater.
6
(
1
),
1700773
(
2018
).
18.
M.
Hathcock
,
B.-I.
Popa
, and
K. W.
Wang
, “
Origami inspired phononic structure with metamaterial inclusions for tunable angular wave steering
,”
J. Appl. Phys.
129
(
14
),
145103
(
2021
).
19.
N.
Liu
,
S.
Kaiser
, and
H.
Giessen
, “
Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules
,”
Adv. Mater.
20
(
23
),
4521
4525
(
2008
).
20.
Y.
Avitzour
,
Y. A.
Urzhumov
, and
G.
Shvets
, “
Wide-angle infrared absorber based on a negative-index plasmonic metamaterial
,”
Phys. Rev. B
79
(
4
),
045131
(
2009
).
21.
J.
Hao
,
J.
Wang
,
X.
Liu
,
W. J.
Padilla
,
L.
Zhou
, and
M.
Qiu
, “
High performance optical absorber based on a plasmonic metamaterial
,”
Appl. Phys. Lett.
96
(
25
),
251104
(
2010
).
22.
J. B.
Khurgin
and
G.
Sun
, “
Scaling of losses with size and wavelength in nanoplasmonics and metamaterials
,”
Appl. Phys. Lett.
99
(
21
),
211106
(
2011
).
23.
X. T.
Kong
,
L.
Khosravi Khorashad
,
Z.
Wang
, and
A. O.
Govorov
, “
Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers
,”
Nano Lett.
18
(
3
),
2001
2008
(
2018
).
24.
X.
Cheng
,
R.
Huang
,
J.
Xu
, and
X.
Xu
, “
Broadband terahertz near-perfect absorbers
,”
ACS Appl. Mater. Interfaces
12
(
29
),
33352
33360
(
2020
).
25.
H.
Zhou
 et al, “
Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication
,”
Appl. Phys. Lett.
115
(
14
),
143507
(
2019
).
26.
B.
Zhang
,
W.
Chen
,
Y.
Wu
,
K.
Ding
, and
R.
Li
, “
Review of 3D printed millimeter-wave and terahertz passive devices
,”
Int. J. Antennas Propagation
2017
,
1
10
(
2017
).
27.
J.
Sun
and
F.
Hu
, “
Three-dimensional printing technologies for terahertz applications: A review
,”
Int. J. RF Microwave Comput.-Aided Eng.
30
(
1
),
e21983
(
2019
).
28.
J. A.
Colla
,
R. E. M.
Vickers
,
M.
Nancarrow
, and
R. A.
Lewis
, “
3D printing metallised plastics as terahertz reflectors
,”
J. Infrared, Millimeter, Terahertz Waves
40
(
7
),
752
762
(
2019
).
29.
S.
Pandey
,
B.
Gupta
, and
A.
Nahata
, “
Terahertz plasmonic waveguides created via 3D printing
,”
Opt. Express
21
(
21
),
24422
24430
(
2013
).
30.
A.
Shastri
 et al, “
3D printing of millimetre wave and low-terahertz frequency selective surfaces using aerosol jet technology
,”
IEEE Access
8
,
177341
177350
(
2020
).
31.
E.
Hagen Waller
,
J.
Karst
, and
G.
von Freymann
, “
Photosensitive material enabling direct fabrication of filigree 3D silver microstructures via laser-induced photoreduction
,”
Light: Adv. Manuf.
2
(
1
),
1
6
(
2021
).
32.
L.
Hirt
,
A.
Reiser
,
R.
Spolenak
, and
T.
Zambelli
, “
Additive manufacturing of metal structures at the micrometer scale
,”
Adv. Mater.
29
(
17
),
1604211
(
2017
).
33.
R. M.
Cardoso
 et al, “
Additive-manufactured (3D-printed) electrochemical sensors: A critical review
,”
Anal. Chim. Acta
1118
,
73
91
(
2020
).
34.
S.-S.
Cho
,
S.-H.
Yoon
, and
I.-P.
Hong
, “
Design of three-dimensional frequency selective structure with replaceable unit structures using a 3-D printing technique
,”
IEEE Antennas Wireless Propagation Lett.
17
(
11
),
2041
2045
(
2018
).
35.
B.
Sanz-Izquierdo
and
E. A.
Parker
, “
3-D printing of elements in frequency selective arrays
,”
IEEE Trans. Antennas Propagation
62
(
12
),
6060
6066
(
2014
).
36.
S.
Zhang
,
W.
Whittow
, and
J. C.
Vardaxoglou
, “
Additively manufactured artificial materials with metallic meta-atoms
,”
IET Microwaves, Antennas Propagation
11
(
14
),
1955
1961
(
2017
).
37.
A.
Sadeqi
,
H.
Rezaei Nejad
,
R. E.
Owyeung
, and
S.
Sonkusale
, “
Three dimensional printing of metamaterial embedded geometrical optics (MEGO)
,”
Microsyst. Nanoeng.
5
,
16
(
2019
).
38.
S.
Wu
,
V. V.
Yachin
,
V. I.
Shcherbinin
, and
V. R.
Tuz
, “
Chiral metasurfaces formed by 3D-printed square helices: A flexible tool to manipulate wave polarization
,”
J. Appl. Phys.
126
(
10
),
103101
(
2019
).
39.
I.
Sakellari
,
X.
Yin
,
M. L.
Nesterov
,
K.
Terzaki
,
A.
Xomalis
, and
M.
Farsari
, “
3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle
,”
Adv. Opt. Mater.
5
(
16
),
1700200
(
2017
).
40.
J. K.
Gansel
,
M.
Latzel
,
A.
Frölich
,
J.
Kaschke
,
M.
Thiel
, and
M.
Wegener
, “
Tapered gold-helix metamaterials as improved circular polarizers
,”
Appl. Phys. Lett.
100
(
10
),
101109
(
2012
).
41.
G.
Kenanakis
 et al, “
Three-dimensional infrared metamaterial with asymmetric transmission
,”
ACS Photonics
2
(
2
),
287
294
(
2015
).
42.
S. H.
Ko
,
J.
Chung
,
N.
Hotz
,
K. H.
Nam
, and
C. P.
Grigoropoulos
, “
Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication
,”
J. Micromech. Microeng.
20
(
12
),
125010
(
2010
).
43.
M. A.
Ordal
,
R.
Bell
,
R.
Alexander
,
L. L.
Long
, and
M.
Querry
, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,”
Appl. Opt.
24
,
4493
(
1986
).
44.
M.
Moaied
,
S.
Palomba
, and
K.
Ostrikov
, “
Quantum plasmonics: Longitudinal quantum plasmons in copper, gold, and silver
,”
J. Opt.
19
(
10
),
105402
(
2017
).
45.
N.
Duangrit
,
B.
Hong
,
A. D.
Burnett
,
P.
Akkaraekthalin
,
I. D.
Robertson
, and
N.
Somjit
, “
Terahertz dielectric property characterization of photopolymers for additive manufacturing
,”
IEEE Access
7
,
12339
12347
(
2019
).
46.
M.
Wu
 et al, “
A three-dimensional all-metal terahertz metamaterial perfect absorber
,”
Appl. Phys. Lett.
111
(
5
),
051101
(
2017
).
47.
H.
Li
,
M.
Qin
,
L.
Wang
,
X.
Zhai
,
R.
Ren
, and
J.
Hu
, “
Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling
,”
Opt. Express
25
(
25
),
31612
31621
(
2017
).
48.
Q.
Li
,
T.
Wang
,
Y.
Su
,
M.
Yan
, and
M.
Qiu
, “
Coupled mode theory analysis of mode-splitting in coupled cavity system
,”
Opt. Express
18
(
8
),
8367
8382
(
2010
).
49.
M.
Janneh
,
A.
De Marcellis
,
E.
Palange
,
A. T.
Tenggara
, and
D.
Byun
, “
Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications
,”
Opt. Commun.
416
,
152
159
(
2018
).
50.
D. R.
Smith
,
D. C.
Vier
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Electromagnetic parameter retrieval from inhomogeneous metamaterials
,”
Phys. Rev. E
71
(
3 Pt 2B
),
036617
(
2005
).
51.
C.
Cen
 et al, “
High quality factor, high sensitivity metamaterial graphene-perfect absorber based on critical coupling theory and impedance matching
,”
Nanomaterials
10
(
1
),
95
(
2020
).
52.
Y.
Peng
,
C.
Shi
,
Y.
Zhu
,
M.
Gu
, and
S.
Zhuang
, “
Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement
,”
PhotoniX
1
(
1
),
12
(
2020
).
53.
A.
Ahmadivand
,
B.
Gerislioglu
,
R.
Ahuja
, and
Y.
Kumar Mishra
, “
Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings
,”
Mater. Today
32
,
108
130
(
2020
).
54.
R.
Wang
 et al, “
Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials
,”
ACS Appl. Mater. Interfaces
12
(
36
),
40629
40634
(
2020
).
55.
Y.
Roh
,
S.-H.
Lee
,
B.
Kang
,
J. W.
Wu
,
B.-K.
Ju
, and
M.
Seo
, “
Terahertz optical characteristics of two types of metamaterials for molecule sensing
,”
Opt. Express
27
(
13
),
19042
19049
(
2019
).
56.
W.
Wang
 et al, “
Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design
,”
Photonics Res.
8
(
4
),
519
(
2020
).

Supplementary Material

You do not currently have access to this content.