We consider tubular nanowires with a polygonal cross section. In this geometry, the lowest energy states are separated into two sets, one the corner and the other side-localized states. The presence of an external magnetic field transverse to the nanowire imposes an additional localization mechanism: the electrons being pushed sideways relatively to the direction of the field. This effect has important implications on the current density as it creates current loops induced by the Lorentz force. We calculate numerically the electromagnetic field radiated by hexagonal, square, and triangular nanowires. We demonstrate that because of the aforementioned localization properties, the radiated field can have a complex distribution determined by the internal geometry of the nanowire. We suggest that measuring the field in the neighborhood of the nanowire could be the basic idea of the tomography of the electron distribution inside it if a smaller receiver antenna could be placed in that zone.

1.
M. S.
Gudiksen
,
L. J.
Lauhon
,
J.
Wang
,
D. C.
Smith
, and
C. M.
Lieber
, “
Growth of nanowire superlattice structures for nanoscale photonics and electronics
,”
Nature
415
,
617
620
(
2002
).
2.
P. J.
Pauzauskie
and
P.
Yang
, “
Nanowire photonics
,”
Mater. Today
9
,
36
45
(
2006
).
3.
D.
You
,
C.
Xu
,
J.
Zhao
,
F.
Qin
,
W.
Zhang
,
R.
Wang
,
Z.
Shi
, and
Q.
Cui
, “
Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection
,”
Adv. Opt. Mater.
7
,
1801522
(
2019
).
4.
L.
Balaghi
,
G.
Bussone
,
R.
Grifone
,
R.
Hübner
,
J.
Grenzer
,
M.
Ghorbani-Asl
,
A. V.
Krasheninnikov
,
H.
Schneider
,
M.
Helm
, and
E.
Dimakis
, “
Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch
,”
Nat. Commun.
10
,
2793
(
2019
).
5.
X.
Duan
,
Y.
Huang
,
Y.
Cui
,
J.
Wang
, and
C. M.
Lieber
, “
Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices
,”
Nature
409
,
66
69
(
2001
).
6.
H.
Zheng
,
T.
Zhai
,
M.
Yu
,
S.
Xie
,
C.
Liang
,
W.
Zhao
,
S. C. I.
Wang
,
Z.
Zhang
, and
X.
Lu
, “
TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors
,”
J. Mater. Chem. C
1
,
225
229
(
2013
).
7.
S.
Porro
,
F.
Risplendi
,
G.
Cicero
,
K.
Bejtka
,
G.
Milano
,
P.
Rivolo
,
A.
Jasmin
,
A.
Chiolerio
,
C. F.
Pirri
, and
C.
Ricciardi
, “
Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states
,”
J. Mater. Chem. C
5
,
10517
10523
(
2017
).
8.
P. D.
Bhuyan
,
A.
Kumar
,
Y.
Sonvane
,
P. N.
Gajjar
,
R.
Magri
, and
S. K.
Gupta
, “
Si and Ge based metallic core/shell nanowires for nano-electronic device applications
,”
Sci. Rep.
8
,
16885
(
2018
).
9.
M. M.
Adachi
,
M. P.
Anantram
, and
K. S.
Karim
, “
Core-shell silicon nanowire solar cells
,”
Sci. Rep.
3
,
1546
(
2013
).
10.
Y.
Kuang
,
M. D.
Vece
,
J. K.
Rath
,
L.
van Dijk
, and
R. E. I.
Schropp
, “
Elongated nanostructures for radial junction solar cells
,”
Rep. Progress Phys.
76
,
106502
(
2013
).
11.
R.
Vismara
,
O.
Isabella
,
A.
Ingenito
,
F. T.
Si
, and
M.
Zeman
, “
Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells
,”
Beilstein J. Nanotechnol.
10
,
322
331
(
2019
).
12.
V.
Mourik
,
K.
Zuo
,
S. M.
Frolov
,
S. R.
Plissard
,
E. P. A.
M. Bakkers
, and
L. P.
Kouwenhoven
, “
Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices
,”
Science
336
,
1003
1007
(
2012
).
13.
A.
Das
,
Y.
Ronen
,
Y.
Most
,
Y.
Oreg
,
M.
Heiblum
, and
H.
Shtrikman
, “
Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions
,”
Nat. Phys.
8
,
887
(
2012
).
14.
C.
Blömers
,
T.
Rieger
,
P.
Zellekens
,
F.
Haas
,
M. I.
Lepsa
,
H.
Hardtdegen
,
Ö.
Gül
,
N.
Demarina
,
D.
Grützmacher
,
H.
Lüth
, and
T.
Schäpers
, “
Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires
,”
Nanotechnology
24
,
035203
(
2013
).
15.
J.
Jadczak
,
P.
Plochocka
,
A.
Mitioglu
,
I.
Breslavetz
,
M.
Royo
,
A.
Bertoni
,
G.
Goldoni
,
T.
Smolenski
,
P.
Kossacki
,
A.
Kretinin
,
H.
Shtrikman
, and
D. K.
Maude
, “
Unintentional high-density p-type modulation doping of a gaas/alas core–multishell nanowire
,”
Nano Lett.
14
,
2807
2814
(
2014
).
16.
F.
Qian
,
Y.
Li
,
S.
Gradečak
,
D.
Wang
,
C. J.
Barrelet
, and
C. M.
Lieber
, “
Gallium nitride-based nanowire radial heterostructures for nanophotonics
,”
Nano Lett.
4
,
1975
1979
(
2004
).
17.
Y.
Dong
,
B.
Tian
,
T. J.
Kempa
, and
C. M.
Lieber
, “
Coaxial group III-nitride nanowire photovoltaics
,”
Nano Lett.
9
,
2183
2187
(
2009
).
18.
H.
Fan
,
M.
Knez
,
R.
Scholz
,
K.
Nielsch
,
E.
Pippel
,
D.
Hesse
,
U.
Gösele
, and
M.
Zacharias
, “
Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template
,”
Nanotechnology
17
,
5157
(
2006
).
19.
T.
Rieger
,
D.
Grutzmacher
, and
M. I.
Lepsa
, “
Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy
,”
Nanoscale
7
,
356
364
(
2015
).
20.
X.
Yuan
,
P.
Caroff
,
F.
Wang
,
Y.
Guo
,
Y.
Wang
,
H. E.
Jackson
,
L. M.
Smith
,
H. H.
Tan
, and
C.
Jagadish
, “
Antimony induced {112}A faceted triangular GaAs1xSbx/InP core/shell nanowires and their enhanced optical quality
,”
Adv. Funct. Mater.
25
,
5300
5308
(
2015
).
21.
D. J. O.
Göransson
,
M.
Heurlin
,
B.
Dalelkhan
,
S.
Abay
,
M. E.
Messing
,
V. F.
Maisi
,
M. T.
Borgström
, and
H. Q.
Xu
, “
Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section
,”
Appl. Phys. Lett.
114
,
053108
(
2019
).
22.
K. A.
Dick
,
C.
Thelander
,
L.
Samuelson
, and
P.
Caroff
, “
Crystal phase engineering in single InAs nanowires
,”
Nano Lett.
10
,
3494
3499
(
2010
).
23.
T.
Rieger
,
M.
Luysberg
,
T.
Schäpers
,
D.
Grützmacher
, and
M. I.
Lepsa
, “
Molecular beam epitaxy growth of GaAs/InAs core–shell nanowires and fabrication of InAs nanotubes
,”
Nano Lett.
12
,
5559
5564
(
2012
).
24.
M.-E.
Pistol
and
C. E.
Pryor
, “
Band structure of core-shell semiconductor nanowires
,”
Phys. Rev. B
78
,
115319
(
2008
).
25.
B. M.
Wong
,
F.
Léonard
,
Q.
Li
, and
G. T.
Wang
, “
Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires
,”
Nano Lett.
11
,
3074
3079
(
2011
).
26.
A. W.
Long
and
B. M.
Wong
, “
Pamela: An open-source software package for calculating nonlocal exact exchange effects on electron gases in core-shell nanowires
,”
AIP Adv.
2
,
032173
(
2012
).
27.
S.
Heedt
,
A.
Manolescu
,
G. A.
Nemnes
,
W.
Prost
,
J.
Schubert
,
D.
Grützmacher
, and
T.
Schäpers
, “
Adiabatic edge channel transport in a nanowire quantum point contact register
,”
Nano Lett.
16
,
4569
4575
(
2016
).
28.
G.
Ferrari
,
G.
Goldoni
,
A.
Bertoni
,
G.
Cuoghi
, and
E.
Molinari
, “
Magnetic states in prismatic core multishell nanowires
,”
Nano Lett.
9
,
1631
1635
(
2009
).
29.
A.
Bertoni
,
M.
Royo
,
F.
Mahawish
, and
G.
Goldoni
, “
Electron and hole gas in modulation-doped GaAs/Al1xGaxAs radial heterojunctions
,”
Phys. Rev. B
84
,
205323
(
2011
).
30.
M.
Royo
,
A.
Bertoni
, and
G.
Goldoni
, “
Landau levels, edge states, and magnetoconductance in GaAs/AlGaAs core-shell nanowires
,”
Phys. Rev. B
87
,
115316
(
2013
).
31.
M.
Fickenscher
,
T.
Shi
,
H. E.
Jackson
,
L. M.
Smith
,
J. M.
Yarrison-Rice
,
C.
Zheng
,
P.
Miller
,
J.
Etheridge
,
B. M.
Wong
,
Q.
Gao
,
S.
Deshpande
,
H. H.
Tan
, and
C.
Jagadish
, “
Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes
,”
Nano Lett.
13
,
1016
1022
(
2013
).
32.
D. W. L.
Sprung
,
H.
Wu
, and
J.
Martorell
, “
Understanding quantum wires with circular bends
,”
J. Appl. Phys.
71
,
515
517
(
1992
).
33.
K.
Bhattacharya
, “
On the dependence of charge density on surface curvature of an isolated conductor
,”
Phys. Scr.
91
,
035501
(
2016
).
34.
A.
Sitek
,
L.
Serra
,
V.
Gudmundsson
, and
A.
Manolescu
, “
Electron localization and optical absorption of polygonal quantum rings
,”
Phys. Rev. B
91
,
235429
(
2015
).
35.
A.
Ballester
,
J.
Planelles
, and
A.
Bertoni
, “
Multi-particle states of semiconductor hexagonal rings: Artificial benzene
,”
J. Appl. Phys.
112
,
eid104317
(
2012
).
36.
A.
Sitek
,
M.
Urbaneja Torres
,
K.
Torfason
,
V.
Gudmundsson
,
A.
Bertoni
, and
A.
Manolescu
, “
Excitons in core–shell nanowires with polygonal cross sections
,”
Nano Lett.
18
,
2581
2589
(
2018
).
37.
M. U.
Torres
,
A.
Sitek
, and
A.
Manolescu
, “
Anisotropic light scattering by prismatic semiconductor nanowires
,”
Opt. Express
27
,
25502
25514
(
2019
).
38.
M.
Urbaneja Torres
,
A.
Sitek
,
S. I.
Erlingsson
,
G.
Thorgilsson
,
V.
Gudmundsson
, and
A.
Manolescu
, “
Conductance features of core-shell nanowires determined by their internal geometry
,”
Phys. Rev. B
98
,
085419
(
2018
).
39.
S. I.
Erlingsson
,
A.
Manolescu
,
G. A.
Nemnes
,
J. H.
Bardarson
, and
D.
Sanchez
, “
Reversal of thermoelectric current in tubular nanowires
,”
Phys. Rev. Lett.
119
,
036804
(
2017
).
40.
A.
Manolescu
,
A.
Sitek
,
J.
Osca
,
L.
Serra
,
V.
Gudmundsson
, and
T. D.
Stanescu
, “
Majorana states in prismatic core-shell nanowires
,”
Phys. Rev. B
96
,
125435
(
2017
).
41.
T. D.
Stanescu
,
A.
Sitek
, and
A.
Manolescu
, “
Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors
,”
Beilstein. J. Nanotechnol.
9
,
1512
1526
(
2018
).
42.
K. O.
Klausen
,
A.
Sitek
,
S. I.
Erlingsson
, and
A.
Manolescu
, “
Majorana zero modes in nanowires with combined triangular and hexagonal geometry
,”
Nanotechnology
31
,
354001
(
2020
).
43.
Ö.
Gül
,
N.
Demarina
,
C.
Blömers
,
T.
Rieger
,
H.
Lüth
,
M. I.
Lepsa
,
D.
Grützmacher
, and
T.
Schäpers
, “
Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires
,”
Phys. Rev. B
89
,
045417
(
2014
).
44.
G.
Martínez-Criado
,
A.
Homs
,
B.
Alén
,
J. A.
Sans
,
J.
Segura-Ruiz
,
A.
Molina-Sánchez
,
J.
Susini
,
J.
Yoo
, and
G.-C.
Yi
, “
Probing quantum confinement within single core–multishell nanowires
,”
Nano Lett.
12
,
5829
5834
(
2012
).
45.
M. M.
Sonner
,
A.
Sitek
,
L.
Janker
,
D.
Rudolph
,
D.
Ruhstorfer
,
M.
Döblinger
,
A.
Manolescu
,
G.
Abstreiter
,
J. J.
Finley
,
A.
Wixforth
,
G.
Koblmüller
, and
H. J.
Krenner
, “
Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells
,”
Nano Lett.
19
,
3336
3343
(
2019
).
46.
M.
Vitiello
,
D.
Coquillat
,
L.
Viti
,
D.
Ercolani
,
F.
Teppe
,
A.
Pitanti
,
F.
Beltram
,
L.
Sorba
,
W.
Knap
, and
A.
Tredicucci
, “
Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors
,”
Nano Lett.
12
,
96
101
(
2011
).
47.
G.
Grzela
,
R.
Paniagua Dominguez
,
T.
Barten
,
Y.
Fontana
,
J.
Sánchez-Gil
, and
J.
Gomez Rivas
, “
Nanowire antenna emission
,”
Nano Lett.
12
,
5481
5486
(
2012
).
48.
G.
Grzela
,
R.
Paniagua-Domínguez
,
T.
Barten
,
D.
van Dam
,
J. A.
Sánchez-Gil
, and
J. G.
Rivas
, “
Nanowire antenna absorption probed with time-reversed Fourier microscopy
,”
Nano Lett.
14
,
3227
3234
(
2014
).
49.
S.
Arslanagić
and
R. W.
Ziolkowski
, “
Highly subwavelength, superdirective cylindrical nanoantenna
,”
Phys. Rev. Lett.
120
,
237401
(
2018
).
50.
A.
Sitek
,
M.
Ţolea
,
M.
Niţă
,
L.
Serra
,
V.
Gudmundsson
, and
A.
Manolescu
, “
In-gap corner states in core-shell polygonal quantum rings
,”
Sci. Rep.
7
,
40197
(
2017
).
51.
C.
Daday
,
A.
Manolescu
,
D. C.
Marinescu
, and
V.
Gudmundsson
, “
Electronic charge and spin density distribution in a quantum ring with spin-orbit and Coulomb interactions
,”
Phys. Rev. B
84
,
115311
(
2011
).
52.
A.
Messiah
,
Quantum Mechanics
(
Dover
,
New York
,
1999
), Vol. I, Chap. X, p. 372.
53.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1997
).
54.
B. M.
Notaros
,
Electromagnetics
(
Pearson
,
2011
), p.
295
.
55.
R.
Timm
,
O.
Persson
,
D. L. J.
Engberg
,
A.
Fian
,
J. L.
Webb
,
J.
Wallentin
,
A.
Jönsson
,
M. T.
Borgström
,
L.
Samuelson
, and
A.
Mikkelsen
, “
Current-voltage characterization of individual as-grown nanowires using a scanning tunneling microscope
,”
Nano Lett.
13
,
5182
5189
(
2013
).
56.
H. J.
Joyce
,
J. L.
Boland
,
C. L.
Davies
,
S. A.
Baig
, and
M. B.
Johnston
, “
A review of the electrical properties of semiconductor nanowires: Insights gained from terahertz conductivity spectroscopy
,”
Semicond. Sci. Technol.
31
,
103003
(
2016
).
57.
B.
Ganjipour
,
S.
Sepehri
,
A. W.
Dey
,
O.
Tizno
,
B. M.
Borg
,
K. A.
Dick
,
L.
Samuelson
,
L.-E.
Wernersson
, and
C.
Thelander
, “
Electrical properties of GaSb/InAsSb core/shell nanowires
,”
Nanotechnology
25
,
425201
(
2014
).
58.
A.
Sitek
,
M. U.
Torres
, and
A.
Manolescu
, “
Corner and side localization of electrons in irregular hexagonal semiconductor shells
,”
Nanotechnology
30
,
454001
(
2019
).
59.
A.
Sitek
,
G.
Thorgilsson
,
V.
Gudmundsson
, and
A.
Manolescu
, “
Multi-domain electromagnetic absorption of triangular quantum rings
,”
Nanotechnology
27
,
225202
(
2016
).
60.
M. U.
Torres
,
A.
Sitek
,
V.
Gudmundsson
, and
A.
Manolescu
, “Radiated fields by polygonal core-shell nanowires,” in 2018 20th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2018), pp. 1–4.
61.
J.
Van Bladel
,
Singular Electromagnetic Fields and Sources
(
IEEE Press
,
Piscataway, NJ
,
1991
).
62.
Y.
Tserkovnyak
and
B. I.
Halperin
, “
Magnetoconductance oscillations in quasiballistic multimode nanowires
,”
Phys. Rev. B
74
,
245327
(
2006
).
63.
G.
Ferrari
,
A.
Bertoni
,
G.
Goldoni
, and
E.
Molinari
,
Phys. Rev. B
78
,
115326
(
2008
).
64.
A.
Manolescu
,
T. O.
Rosdahl
,
S. I.
Erlingsson
,
L.
Serra
, and
V.
Gudmundsson
, “
Snaking states on a cylindrical surface in a perpendicular magnetic field
,”
Eur. Phys. J. B
86
,
445
(
2013
).
65.
T. O.
Rosdahl
,
A.
Manolescu
, and
V.
Gudmundsson
, “
Spin and impurity effects on flux-periodic oscillations in core-shell nanowires
,”
Phys. Rev. B
90
,
035421
(
2014
).
66.
C.-H.
Chang
and
C.
Ortix
, “
Ballistic anisotropic magnetoresistance in core–shell nanowires and rolled-up nanotubes
,”
Int. J. Mod. Phys. B
30
,
1630016
(
2016
).
67.
P.
Zijlstra
,
P. M. R.
Paulo
, and
M.
Orrit
, “
Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod
,”
Nat. Nanotechnol.
7
,
379
382
(
2012
).
68.
J.
Dorfmüller
,
D.
Dregely
,
M.
Esslinger
,
W.
Khunsin
,
R.
Vogelgesang
,
K.
Kern
, and
H.
Giessen
, “
Near-field dynamics of optical Yagi-Uda nanoantennas
,”
Nano Lett.
11
,
2819
2824
(
2011
).
69.
D.
Dregely
,
K.
Lindfors
,
M.
Lippitz
,
N.
Engheta
,
M.
Totzeck
, and
H.
Giessen
, “
Imaging and steering an optical wireless nanoantenna link
,”
Nat. Commun.
5
,
4354
(
2014
).
70.
P.
Ginzburg
,
A.
Nevet
,
N.
Berkovitch
,
A.
Normatov
,
G. M.
Lerman
,
A.
Yanai
,
U.
Levy
, and
M.
Orenstein
, “
Plasmonic resonance effects for tandem receiving-transmitting nanoantennas
,”
Nano Lett.
11
,
220
224
(
2011
).
You do not currently have access to this content.