Applied field magnetoplasmadynamic thrusters (AF-MPDTs) are one of the potential thrusters for high power space propulsion. However, the high anode power deposition limits the improvement in the thruster’s efficiency. According to previous research studies, the anode voltage drop is supposed to be the main factor of the anode power deposition in AF-MPDTs without considering the effect of the centrifugal force. Actually, the centrifugal force cannot be neglected when the magnetic field is high, where the anode voltage drop is not the only dominant factor of the anode power deposition. Due to the significant centrifugal force, there might be no obvious shortage of charge carriers near the anode surface in AF-MPDTs with propellant injection between the cathode and anode. The electrons will be compressed to the anode surface instead of the cathode. In order to investigate the reason for the anode power deposition in AF-MPDTs, a model considering the effect of the centrifugal force is established. The calculated anode power deposition shows good agreement with the corresponding experimental data. In addition, when the magnetic field is high, the viscous heating cannot be neglected, which is as significant as the anode sheath heating and Joule heating. Finally, in order to reduce the anode power deposition, a magnetic field distribution with a high value near the cathode and a low value near the anode is proposed. According to the evaluation by the model, the anode power deposition can be reduced by 30% via the new magnetic field when the magnetic field exceeds 0.1 T.

1.
Z.
Zhang
,
W. Y. L.
Ling
,
H.
Tang
,
J.
Cao
,
X.
Liu
, and
N.
Wang
, “
A review of the characterization and optimization of ablative pulsed plasma thrusters
,”
Rev. Mod. Plasma Phys.
3
,
5
(
2019
).
2.
Z.
Zhang
,
J.
Ren
,
H.
Tang
,
W. Y. L.
Ling
,
T. M.
York
, and
J.
Cao
, “
Direct investigation of near-surface plasma acceleration in a pulsed plasma thruster using a segmented anode
,”
J. Phys. D: Appl. Phys.
51
,
395201
(
2018
).
3.
S.
Cao
,
J.
Ren
,
H.
Tang
,
R.
Pan
,
Z.
Zhang
,
K.
Zhang
, and
J.
Cao
, “
Modeling on plasma energy balance and transfer in a hollow cathode
,”
J. Phys. D: Appl. Phys.
52
,
285202
(
2019
).
4.
V. B.
Tikhonov
,
S. A.
Semenikhin
,
J. R.
Brophy
, and
J. E.
Polk
, “
Performance of 130 kW MPD thruster with an external magnetic field and Li as propellant
,” in
The 25th International Electric Propulsion Conference
(Electric Rocket Propulsion Society, 1997), pp. 728–733.
5.
A.
Kodys
and
E.
Choueiri
, “A critical review of the state-of-the-art in the performance of applied-field magnetoplasmadynamic thrusters,” in The 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ (American Institute of Aeronautics and Astronautics, 2005), Vol. 4247, p. 4247.
6.
M.
LaPointe
,
E.
Strzempkowski
, and
E.
Pencil
, “High power MPD thruster performance measurements,” in The 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, Fort Lauderdale, FL, 2004).
7.
B.
Wang
,
H.
Tang
,
Y.
Wang
,
C.
Lu
,
C.
Zhou
,
Y.
Dong
,
G.
Wang
,
Y.
Cong
,
D.
Luu
, and
J.
Cao
, “
A 100 KW class applied-field magnetoplasmadynamic thruster
,”
J. Visualized Exp.
142
,
e58510
(
2018
).
8.
R.
Myers
and
G.
Soulas
, “Anode power deposition in applied-field MPD thrusters,” in 28th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 1992).
9.
A. D.
Gallimore
,
A. J.
Kelly
, and
R. G.
Jahn
, “
Anode power deposition in magnetoplasmadynamic thrusters
,”
J. Propul. Power
9
,
361
368
(
1993
).
10.
A.
Boxberger
and
G.
Herdrich
, “
Integral measurements of 100 kW class steady state applied-field magnetoplasmadynamic thruster SX3 and perspectives of AF-MPD technology
,” in
The 35th International Electric Propulsion Conference
(Georgia Institute of Technology, Atlanta, GA, 2017).
11.
A. J.
Saber
, “Anode power in a quasi-steady MPD thruster,” Ph.D. thesis (Princeton University, 1974).
12.
W.
Schall
, “
Influence of magnetic fields on anode losses in MPD-arcs
,”
AIAA J.
11
,
10
11
(
1973
).
13.
A. D.
Gallimore
,
A. J.
Kelly
, and
R. G.
Jahn
, “
Anode power deposition in quasisteady magnetoplasmadynamic thrusters
,”
J. Propul. Power
8
,
1224
1231
(
1992
).
14.
M.
Ahangar
, “
Analytical investigation of anode heat flux in a magnetoplasmadynamic thruster
,”
Appl. Therm. Eng.
118
,
73
81
(
2017
).
15.
A. D.
Gallimore
and
A. J.
Kelly
, “
Anode power deposition in a MPD thruster with a magnetically annulled Hall parameter anode
,” in
28th Joint Propulsion Conference and Exhibit
(American Institute of Aeronautics and Astronautics, 1992), p. 3461.
16.
Z.
Chen
,
Y.
Wang
,
H.
Tang
,
J.
Ren
,
M.
Li
,
Z.
Zhang
,
S.
Cao
, and
J.
Cao
, “
Electric potential barriers in the magnetic nozzle
,”
Phys. Rev. E
101
,
053208
(
2020
).
17.
C.
Lu
,
G.
Xia
,
B.
Sun
, and
Y.
Han
, “
Confinement characteristic of primary electrons with the variation of channel width in the discharge chamber of annular ion thruster
,”
Chin. J. Aeronaut.
34
,
79
92
(
2021
).
18.
C.
Lu
,
Z.
Yang
,
J.
Bai
,
Y.
Cao
, and
X.
He
, “
Three-dimensional immersed finite-element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump
,”
Int. J. Numer. Methods Eng.
121
,
2107
2127
(
2020
).
19.
C.
Lu
,
G.
Xia
,
B.
Sun
, and
Y.
Han
, “
A particle model of ion thruster plume Mo source based on grid erosion
,”
Acta Astronaut.
177
,
217
231
(
2020
).
20.
C.
Lu
,
J.
Wan
,
Y.
Cao
, and
X.
He
, “
A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems
,”
Comput. Methods Appl. Mech. Eng.
372
,
113345
(
2020
).
21.
E.
Niewood
and
M.
Martinez-Sanchez
, “An explanation for anode voltage drops in MPD thrusters,” in 29th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 1993).
22.
A. D.
Gallimore
,
R. M.
Myers
,
A. J.
Kelly
, and
R. G.
Jahn
, “
Anode power deposition in an applied-field segmented anode MPD thruster
,”
J. Propul. Power
10
,
262
268
(
1994
).
23.
Z.
Li
,
H.
Tang
,
Y.
Wang
,
B.
Wang
,
X.
Lu
, and
Z.
Zhang
, “
Increasing the effective voltage in applied-field MPD thrusters
,”
J. Phys. D: Appl. Phys.
51
,
085201
(
2018
).
24.
D.
Lev
, “Investigation of efficiency in applied field magnetoplasmadynamic thrusters,” Ph.D. thesis (Princeton University, 2012).
25.
R.
Albertoni
, “Cathode processes in MPD thrusters,” Ph.D. thesis (University of Pisa, 2012).
26.
P. G.
Mikellides
,
P. J.
Turchi
, and
N. F.
Roderick
, “
Applied-field magnetoplasmadynamic thrusters, part 1: Numerical simulations using the MACH2 code
,”
J. Propul. Power
16
,
887
893
(
2000
).
27.
D.
Haag
and
M.
Fertig
, “Numerical simulations of magnetoplasmadynamic thrusters with coaxial applied magnetic field,” in The 30th International Electric Propulsion Conference, Florence, Italy (Electric Rocket Propulsion Society, 2007).
28.
K.
Kubota
, “Numerical study on plasma flow field and performance of magnetoplasmadynamic thrusters,” Ph.D. thesis (Tokyo Institute of Technology, 2009).
29.
H.
Tobari
,
A.
Ando
,
M.
Inutake
, and
K.
Hattori
, “
Characteristics of electromagnetically accelerated plasma flow in an externally applied magnetic field
,”
Phys. Plasmas
14
,
093507
(
2007
).
30.
H. A.
Dinulescu
and
E.
Pfender
, “
Analysis of the anode boundary layer of high intensity arcs
,”
J. Appl. Phys.
51
,
3149
3157
(
1980
).
31.
V. A.
Nemchinsky
and
Y.
Raitses
, “
Anode sheath transition in an anodic arc for synthesis of nanomaterials
,”
Plasma Sources Sci. Technol.
25
,
035003
(
2016
).
32.
D.
Lev
and
E. Y.
Choueiri
, “Scaling of anode sheath voltage fall with the operational parameters in applied-field MPD thrusters,” in The 32nd International Electric Propulsion Conference, Wiesbaden, Germany (Electric Rocket Propulsion Society, 2011).
33.
K.
Sankaran
, “Simulation of plasma flows in self-field Lorentz force accelerators,” Ph.D. thesis (Princeton University, 2005).
34.
E. Y.
Choueiri
, “
Anomalous resistivity and heating in current-driven plasma thrusters
,”
Phys. Plasmas
6
,
2290
2306
(
1999
).
35.
R.
Myers
, “Applied-field MPD thruster geometry effects,” in The 27th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Sacramento, CA, 1991).
36.
A.
Sasoh
, “
Simple formulation of magnetoplasmadynamic acceleration
,”
Phys. Plasmas
1
,
464
469
(
1994
).
37.
M.
Coletti
, “Simple thrust formula for an MPD thruster with applied-magnetic field from magnetic stress tensor,” in The 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences (American Institute of Aeronautics and Astronautics, 2007).
38.
D.
Lev
and
E.
Choueiri
, “Scaling of efficiency with applied magnetic field in magnetoplasmadynamic thrusters,” in The 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences (American Institute of Aeronautics and Astronautics, 2010).
39.
A. D.
Gallimore
,
A. J.
Kelly
, and
R. G.
Jahn
, “
Anode power deposition in MPD thrusters
,”
J. Propul. Power
8
,
1224
1231
(
1991
).
40.
K.
Zhang
,
Y.
Wang
,
H.
Tang
,
Y.
Li
,
B.
Wang
,
T. M.
York
, and
L.
Yang
, “
Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators
,”
Energy
209
,
118479
(
2020
).
You do not currently have access to this content.