In a system of C2 symmetry, symmetry-protected bound states in the continuum (SP-BICs) exist with a continuous spectrum of radiating waves that can carry energy away and enable an infinite radiative quality (Q) factor and zero linewidth. However, the SP-BICs transform into quasi-BICs by breaking the C2 symmetry of the system, where the resonance lifetime and linewidth become finite and measurable. As such, the quasi-BICs are very sensitive to the polarization of incident radiation. Owing to the application of a biosensor or a lasing device, it is unavoidable to work with an unpolarized radiative beam. Herein, we propose a metasurface in a C4 symmetric layout, which exhibits polarization-insensitive terahertz symmetry-protected quasi-BICs. The orientations of adjacent two meta-molecules (MMs) are designed to be orthogonal to each other. By tuning the degree of asymmetry along the orientation of MMs, the quasi-BICs exhibit insensitivity to the polarization of the incident terahertz wave. A large degree of asymmetry results in a deformation of an electric quadrupole, which forms an energy leaky channel to the free space. Due to the translational symmetry, the wave-vector of the lattice in C4 symmetry is conserved so that the electric components of transmitted radiation along the x axis is identical to that along the y axis, Txx = Tyy. As such, the leaky channel of electromagnetic scattering becomes insensitive to the incident polarization. Our results present an approach to achieve polarization-insensitive quasi-BICs in a topologically symmetric metasurface, which is helpful for the innovation of terahertz biosensor.

1.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
,
Nat. Rev. Mater.
1
(
9
),
16048
(
2016
).
2.
R.
Parker
,
J. Sound Vib.
4
(
1
),
62
72
(
1966
).
3.
S.
Wonjoo
,
W.
Zheng
, and
F.
Shanhui
,
IEEE J. Quantum Electron.
40
(
10
),
1511
1518
(
2004
).
4.
C. M.
Linton
and
P.
McIver
,
Wave Motion
45
(
1
),
16
29
(
2007
).
5.
B.
Zhen
,
C. W.
Hsu
,
L.
Lu
,
A. D.
Stone
, and
M.
Soljačić
,
Phys. Rev. Lett.
113
(
25
),
257401
(
2014
).
6.
X.
Zhao
,
C.
Chen
,
K.
Kaj
,
I.
Hammock
,
Y.
Huang
,
R. D.
Averitt
, and
X.
Zhang
,
Optica
7
(
11
),
1548
1554
(
2020
).
7.
A.
Overvig
,
N.
Yu
, and
A.
Alù
,
Phys. Rev. Lett.
126
(
7
),
073001
(
2021
).
8.
M.
Kang
,
S.
Zhang
,
M.
Xiao
, and
H.
Xu
,
Phys. Rev. Lett.
126
(
11
),
117402
(
2021
).
9.
S. I.
Azzam
and
A. V.
Kildishev
,
Adv. Opt. Mater.
9
(
1
),
2001469
(
2021
).
10.
S.
Longhi
,
Opt. Lett.
46
(
9
),
2091
2094
(
2021
).
11.
Y.
Kawano
,
Laser Photon. Rev.
6
(
2
),
246
257
(
2012
).
12.
J.
Lou
,
R.
Yang
,
J.
Liang
,
Y.
Yu
,
L.
Zhang
,
C.
Zhang
,
T.
Li
,
Y.
Fan
,
F.
Zhang
,
G.
Wang
,
J.
Wang
, and
T.
Cai
,
Adv. Photonics Res.
2
(
4
),
2000175
(
2021
).
13.
K.
Li
,
R.
Yuasa
,
R.
Utaki
,
M.
Sun
,
Y.
Tokumoto
,
D.
Suzuki
, and
Y.
Kawano
,
Nat. Commun.
12
(
1
),
3009
(
2021
).
14.
R. I.
Stantchev
,
D. B.
Phillips
,
P.
Hobson
,
S. M.
Hornett
,
M. J.
Padgett
, and
E.
Hendry
,
Optica
4
(
8
),
989
992
(
2017
).
15.
W. L.
Chan
,
M. L.
Moravec
,
R. G.
Baraniuk
, and
D. M.
Mittleman
,
Opt. Lett.
33
(
9
),
974
976
(
2008
).
16.
L. A.
Downes
,
A. R.
MacKellar
,
D. J.
Whiting
,
C.
Bourgenot
,
C. S.
Adams
, and
K. J.
Weatherill
,
Phys. Rev. X
10
(
1
),
011027
(
2020
).
17.
L.
Zanotto
,
R.
Piccoli
,
J.
Dong
,
D.
Caraffini
,
R.
Morandotti
, and
L.
Razzari
,
Opt. Express
28
(
3
),
3795
3802
(
2020
).
18.
Y. K.
Srivastava
,
R. T.
Ako
,
M.
Gupta
,
M.
Bhaskaran
,
S.
Sriram
, and
R.
Singh
,
Appl. Phys. Lett.
115
(
15
),
151105
(
2019
).
19.
D.-K.
Lee
,
J.-H.
Kang
,
J.
Kwon
,
J.-S.
Lee
,
S.
Lee
,
D. H.
Woo
,
J. H.
Kim
,
C.-S.
Song
,
Q. H.
Park
, and
M.
Seo
,
Sci. Rep.
7
(
1
),
8146
(
2017
).
20.
D.-K.
Lee
,
J.-H.
Kang
,
J.-S.
Lee
,
H.-S.
Kim
,
C.
Kim
,
J.
Hun Kim
,
T.
Lee
,
J.-H.
Son
,
Q. H.
Park
, and
M.
Seo
,
Sci. Rep.
5
(
1
),
15459
(
2015
).
21.
D.
Lee
,
G.
Kim
,
C.
Kim
,
Y. M.
Jhon
,
J. H.
Kim
,
T.
Lee
,
J.
Son
, and
M.
Seo
,
IEEE Trans. Terahertz Sci. Technol.
6
(
3
),
389
395
(
2016
).
22.
F.
Fan
,
W.-H.
Gu
,
X.-H.
Wang
, and
S.-J.
Chang
,
Appl. Phys. Lett.
102
(
12
),
121113
(
2013
).
23.
M.
Chen
,
F.
Fan
,
S.
Shen
,
X.
Wang
, and
S.
Chang
,
Appl. Opt.
55
(
23
),
6471
6474
(
2016
).
24.
M. A.
Seo
,
H. R.
Park
,
S. M.
Koo
,
D. J.
Park
,
J. H.
Kang
,
O. K.
Suwal
,
S. S.
Choi
,
P. C. M.
Planken
,
G. S.
Park
,
N. K.
Park
,
Q. H.
Park
, and
D. S.
Kim
,
Nat. Photonics
3
(
3
),
152
156
(
2009
).
25.
L.
Yuan
and
Y. Y.
Lu
,
Opt. Lett.
42
(
21
),
4490
4493
(
2017
).
26.
L.
Cong
and
R.
Singh
,
Adv. Opt. Mater.
7
(
13
),
1900383
(
2019
).
27.
T. C. W.
Tan
,
E.
Plum
, and
R.
Singh
,
Adv. Opt. Mater.
8
(
6
),
1901572
(
2020
).
28.
J. F.
Algorri
,
F.
Dell’Olio
,
P.
Roldán-Varona
,
L.
Rodríguez-Cobo
,
J. M.
López-Higuera
,
J. M.
Sánchez-Pena
, and
D. C.
Zografopoulos
,
Opt. Express
29
(
7
),
10374
10385
(
2021
).
29.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
,
Phys. Rev. Lett.
121
(
19
),
193903
(
2018
).
30.
Z.
Liu
,
Y.
Xu
,
Y.
Lin
,
J.
Xiang
,
T.
Feng
,
Q.
Cao
,
J.
Li
,
S.
Lan
, and
J.
Liu
,
Phys. Rev. Lett.
123
(
25
),
253901
(
2019
).
31.
M. V.
Gorkunov
,
A. A.
Antonov
, and
Y. S.
Kivshar
,
Phys. Rev. Lett.
125
(
9
),
093903
(
2020
).
32.
C.
Kyaw
,
R.
Yahiaoui
,
J. A.
Burrow
,
V.
Tran
,
K.
Keelen
,
W.
Sims
,
E. C.
Red
,
W. S.
Rockward
,
M. A.
Thomas
,
A.
Sarangan
,
I.
Agha
, and
T. A.
Searles
,
Commun. Phys.
3
(
1
),
212
(
2020
).
33.
S.
Li
,
C.
Zhou
,
T.
Liu
, and
S.
Xiao
,
Phys. Rev. A
100
(
6
),
063803
(
2019
).
34.
D. R.
Abujetas
,
Á.
Barreda
,
F.
Moreno
,
A.
Litman
,
J.-M.
Geffrin
, and
J. A.
Sánchez-Gil
,
Laser Photon. Rev.
15
(
1
),
2000263
(
2021
).
35.
S.
Han
,
L.
Cong
,
Y. K.
Srivastava
,
B.
Qiang
,
M. V.
Rybin
,
A.
Kumar
,
R.
Jain
,
W. X.
Lim
,
V. G.
Achanta
,
S. S.
Prabhu
,
Q. J.
Wang
,
Y. S.
Kivshar
, and
R.
Singh
,
Adv. Mater.
31
(
37
),
1901921
(
2019
).
36.
S.
Han
,
P.
Pitchappa
,
W.
Wang
,
Y. K.
Srivastava
,
M. V.
Rybin
, and
R.
Singh
,
Adv. Opt. Mater.
9
(
7
),
2002001
(
2021
).
37.
T. C.
Tan
,
Y. K.
Srivastava
,
R. T.
Ako
,
W.
Wang
,
M.
Bhaskaran
,
S.
Sriram
,
I.
Al-Naib
,
E.
Plum
, and
R.
Singh
,
Adv. Mater.
33
(
27
),
2100836
(
2021
).
38.
H.
Zhao
,
L.
Wang
, and
Z.
Zhao
,
Appl. Phys. Express
13
(
9
),
092001
(
2020
).
39.
Z.
Zhao
,
H.
Zhao
,
R. T.
Ako
,
J.
Zhang
,
H.
Zhao
, and
S.
Sriram
,
Opt. Express
27
(
19
),
026459
26470
(
2019
).
40.
Z.
Zhao
,
Z.
Gu
,
R. T.
Ako
,
H.
Zhao
, and
S.
Sriram
,
Opt. Express
28
(
10
),
15573
15586
(
2020
).
41.
Z.
Zhao
,
H.
Zhao
,
R. T.
Ako
,
S.
Nickl
, and
S.
Sriram
,
Appl. Phys. Lett.
117
(
1
),
011105
(
2020
).
42.
J.
Neu
and
C. A.
Schmuttenmaer
,
J. Appl. Phys.
124
(
23
),
231101
(
2018
).
43.
L.
Wang
,
Z.
Zhao
,
R. T.
Ako
, and
S.
Sriram
,
Appl. Phys. Express
14
(
6
),
062003
(
2021
).
44.
D. R.
Abujetas
,
N.
van Hoof
,
S.
ter Huurne
,
J.
Gómez Rivas
, and
J. A.
Sánchez-Gil
,
Optica
6
(
8
),
996
1001
(
2019
).
45.
G.
Scalari
,
C.
Maissen
,
S.
Cibella
,
R.
Leoni
, and
J.
Faist
,
Appl. Phys. Lett.
105
(
26
),
261104
(
2014
).
46.
D.
Liu
,
F.
Wu
,
R.
Yang
,
L.
Chen
,
X.
He
, and
F.
Liu
,
Opt. Lett.
46
(
17
),
4370
4373
(
2021
).
47.
M. A.
Ordal
,
R. J.
Bell
,
R. W.
Alexander
,
L. L.
Long
, and
M. R.
Querry
,
Appl. Opt.
24
(
24
),
4493
4499
(
1985
).
48.
M.-D.
He
,
J.-Q.
Liu
, and
K.-J.
Wang
,
J. Phys. D: Appl. Phys.
45
(
34
),
345304
(
2012
).
49.
C.
Menzel
,
C.
Rockstuhl
, and
F.
Lederer
,
Phys. Rev. A
82
(
5
),
053811
(
2010
).
You do not currently have access to this content.