With potential thermal management applications, such as plastic heat exchangers and thermal interface materials, thermally conductive polymers have gained renewed interest in the past decade. Ultradrawn polyethylene fibers and films have been experimentally shown to have thermal conductivities at least two orders of magnitude of these in their amorphous counterparts. However, the theoretical molecular-level understanding of strain effects on the thermal transport in drawn semicrystalline polymers, such as polyethylene, especially the roles of different interlamellar chain topologies in the crystalline-amorphous interphase region, remains elusive. Using molecular dynamics simulations, we investigated the strain effects on the thermal conductivity and vibrational transport in a simplified sandwich semicrystalline structure. We found that the topology of the interlamellar chains determines the dependence of thermal conductivity on strains. Comparing thermal resistances at different regions in the interlamellar structure, thermal resistance at the amorphous region is not necessarily the highest; the interphase region with the transition from the crystalline to amorphous state can have a much higher resistance. We conducted the frequency domain analysis to obtain the heat flux spectrum in the crystalline-amorphous interphase region and found that the vibrational modes at intermediate and high frequencies can contribute more than these at relatively low frequencies to the total heat flux because of the complex interlamellar chain topologies (e.g., loop chains). Our work provides molecular-level understandings of the structural-property relationship in semicrystalline polymers with strains, which could assist the design and development of thermally conductive polymers for thermal management applications.

1.
X.
Wei
,
Z.
Wang
,
Z.
Tian
, and
T.
Luo
,
J. Heat Transfer
143
, 072101 (
2021
).
2.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
,
163
174
(
2014
).
3.
H.
Ma
,
B.
Gao
,
M.
Wang
,
Z.
Yuan
,
J.
Shen
,
J.
Zhao
, and
Y.
Feng
,
J. Mater. Sci.
56
,
1064
1086
(
2021
).
4.
G.
Li
,
R.
Zhu
, and
Y.
Yang
,
Nat. Photonics
6
,
153
161
(
2012
).
5.
6.
A. R. J.
Hussain
,
A. A.
Alahyari
,
S. A.
Eastman
,
C.
Thibaud-Erkey
,
S.
Johnston
, and
M. J.
Sobkowicz
,
Appl. Therm. Eng.
113
,
1118
1127
(
2017
).
7.
S.
Shen
,
A.
Henry
,
J.
Tong
,
R.
Zheng
, and
G.
Chen
,
Nat. Nanotechnol.
5
,
251
255
(
2010
).
8.
Y.
Xu
,
D.
Kraemer
,
B.
Song
,
Z.
Jiang
,
J.
Zhou
,
J.
Loomis
,
J.
Wang
,
M.
Li
,
H.
Ghasemi
,
X.
Huang
,
X.
Li
, and
G.
Chen
,
Nat. Commun.
10
,
1771
(
2019
).
9.
Z.
Zhong
,
M. C.
Wingert
,
J.
Strzalka
,
H.-H.
Wang
,
T.
Sun
,
J.
Wang
,
R.
Chen
, and
Z.
Jiang
,
Nanoscale
6
,
8283
8291
(
2014
).
10.
V.
Singh
,
T. L.
Bougher
,
A.
Weathers
,
Y.
Cai
,
K.
Bi
,
M. T.
Pettes
,
S. A.
McMenamin
,
W.
Lv
,
D. P.
Resler
,
T. R.
Gattuso
,
D. H.
Altman
,
K. H.
Sandhage
,
L.
Shi
,
A.
Henry
, and
B. A.
Cola
,
Nat. Nanotechnol.
9
,
384
390
(
2014
).
11.
G.-H.
Kim
,
D.
Lee
,
A.
Shanker
,
L.
Shao
,
M. S.
Kwon
,
D.
Gidley
,
J.
Kim
, and
K. P.
Pipe
,
Nat. Mater.
14
,
295
300
(
2015
).
12.
Y.
Wu
,
X.
Zhang
,
A.
Negi
,
J.
He
,
G.
Hu
,
S.
Tian
, and
J.
Liu
,
Polymers
12
,
426
(
2020
).
13.
A.
Shanker
,
C.
Li
,
G.-H.
Kim
,
D.
Gidley
,
K. P.
Pipe
, and
J.
Kim
,
Sci. Adv.
3
,
e1700342
(
2017
).
14.
Y.
Xu
,
X.
Wang
,
J.
Zhou
,
B.
Song
,
Z.
Jiang
,
M. Y.
Lee Elizabeth
,
S.
Huberman
,
K.
Gleason Karen
, and
G.
Chen
,
Sci. Adv.
4
,
eaar3031
(
2018
).
15.
J.
Liu
and
R.
Yang
,
Phys. Rev. B
81
,
174122
(
2010
).
16.
J.
Liu
and
R.
Yang
,
Phys. Rev. B
86
,
104307
(
2012
).
17.
J.
He
,
K.
Kim
,
Y.
Wang
, and
J.
Liu
,
Appl. Phys. Lett.
112
,
051907
(
2018
).
18.
X.
Wang
,
V.
Ho
,
R. A.
Segalman
, and
D. G.
Cahill
,
Macromolecules
46
,
4937
4943
(
2013
).
19.
B.
Zhu
,
J.
Liu
,
T.
Wang
,
M.
Han
,
S.
Valloppilly
,
S.
Xu
, and
X.
Wang
,
ACS Omega
2
,
3931
3944
(
2017
).
20.
R.
Shrestha
,
P.
Li
,
B.
Chatterjee
,
T.
Zheng
,
X.
Wu
,
Z.
Liu
,
T.
Luo
,
S.
Choi
,
K.
Hippalgaonkar
,
M. P.
de Boer
, and
S.
Shen
,
Nat. Commun.
9
,
1664
(
2018
).
21.
22.
P. J.
in ‘t Veld
and
G. C.
Rutledge
,
Macromolecules
36
,
7358
7365
(
2003
).
23.
J.
Hennig
,
J. Polym. Sci. Part C: Polym. Symp.
16
,
2751
2761
(
1967
).
24.
T.
Lu
,
K.
Kim
,
X.
Li
,
J.
Zhou
,
G.
Chen
, and
J.
Liu
,
J. Appl. Phys.
123
,
015107
(
2018
).
25.
J.
Liu
,
M.
Alhashme
, and
R.
Yang
,
Carbon
50
,
1063
1070
(
2012
).
26.
Y.
Wang
,
J.
Liu
,
J.
Zhou
, and
R.
Yang
,
J. Phys. Chem. C
117
,
24716
24725
(
2013
).
27.
F.
Sun
,
T.
Zhang
,
M. M.
Jobbins
,
Z.
Guo
,
X.
Zhang
,
Z.
Zheng
,
D.
Tang
,
S.
Ptasinska
, and
T.
Luo
,
Adv. Mater.
26
,
6093
6099
(
2014
).
28.
M.
Takayanagi
,
K.
Imada
, and
T.
Kajiyama
,
J. Polym. Sci. Part C: Polym. Symp.
15
,
263
281
(
1967
).
29.
J. C. H.
Affdl
and
J. L.
Kardos
,
Polym. Eng. Sci.
16
,
344
352
(
1976
).
30.
H. L.
Cox
,
British J. Appl. Phys.
3
,
72
79
(
1952
).
31.
A.
Peterlin
,
Colloid Polym. Sci.
265
,
357
382
(
1987
).
32.
A.
Keller
,
Rep. Prog. Phys.
31
,
623
704
(
1968
).
33.
A.
Peterlin
,
J. Mater. Sci.
6
,
490
508
(
1971
).
34.
J. F.
Twisleton
,
J. W.
White
, and
P. A.
Reynolds
,
Polymer
23
,
578
588
(
1982
).
35.
S.
Lee
and
G. C.
Rutledge
,
Macromolecules
44
,
3096
3108
(
2011
).
36.
J. M.
Kim
,
R.
Locker
, and
G. C.
Rutledge
,
Macromolecules
47
,
2515
2528
(
2014
).
37.
I.-C.
Yeh
,
J. W.
Andzelm
, and
G. C.
Rutledge
,
Macromolecules
48
,
4228
4239
(
2015
).
38.
I.-C.
Yeh
,
J. L.
Lenhart
,
G. C.
Rutledge
, and
J. W.
Andzelm
,
Macromolecules
50
,
1700
1712
(
2017
).
39.
R.
Ranganathan
,
V.
Kumar
,
A. L.
Brayton
,
M.
Kröger
, and
G. C.
Rutledge
,
Macromolecules
53
,
4605
4617
(
2020
).
40.
Y.
Lu
,
J.
Liu
,
X.
Xie
, and
D. G.
Cahill
,
ACS Macro Lett.
5
,
646
650
(
2016
).
41.
Y.
Zhou
and
M.
Hu
,
Phys. Rev. B
92
,
195205
(
2015
).
42.
G. T.
Dee
,
T.
Ougizawa
, and
D. J.
Walsh
,
Polymer
33
,
3462
3469
(
1992
).
43.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
44.
L.
Yang
,
B.
Latour
, and
A. J.
Minnich
,
Phys. Rev. B
97
,
205306
(
2018
).
45.
T.
Feng
,
Y.
Zhong
,
J.
Shi
, and
X.
Ruan
,
Phys. Rev. B
99
,
045301
(
2019
).
46.
X.
Duan
,
Z.
Li
,
J.
Liu
,
G.
Chen
, and
X.
Li
,
J. Appl. Phys.
125
,
164303
(
2019
).
47.
J.
He
and
J.
Liu
,
J. Appl. Phys.
129
,
215102
(
2021
).
48.
T.
Zhang
and
T.
Luo
,
J. Phys. Chem. B
120
,
803
812
(
2016
).
49.
T.
Feng
,
J.
He
,
A.
Rai
,
D.
Hun
,
J.
Liu
, and
S. S.
Shrestha
,
Phys. Rev. Appl.
14
,
044023
(
2020
).
50.
A. B.
Robbins
,
S. X.
Drakopoulos
,
I.
Martin-Fabiani
,
S.
Ronca
, and
A. J.
Minnich
,
Proc. Natl. Acad. Sci. U.S.A.
116
,
017163
17168
(
2019
).
51.
X.
Wang
,
M.
Kaviany
, and
B.
Huang
,
Nanoscale
9
,
018022
18031
(
2017
).
52.
B.
Li
,
F.
DeAngelis
,
G.
Chen
, and
A.
Henry
“Normal mode analysis of the thermal conductivity in amorphous polymers: The importance of localized modes,”
Nature
(published online).
53.
K.
Gordiz
and
A.
Henry
,
Sci. Rep.
6
,
023139
(
2016
).
54.
K.
Gordiz
and
A.
Henry
,
J. Appl. Phys.
121
,
025102
(
2017
).
You do not currently have access to this content.