With the development of electromagnetic technology, there is an urgent need for further research on highly efficient and lightweight microwave absorption materials. Transition metal carbides have drawn tremendous attention due to their strong microwave dissipation ability and perfect stability in extreme environments. However, owing to carburization under high temperatures, synthesizing metal carbides with specified morphology is still a challenge. Here, titanium carbide (TiC) with a flake-like structure was prepared through a carbothermic reduction method guided by two-dimensional graphene sheets. The prepared flake-like TiC sheets show excellent microwave absorption properties in 1–40 GHz compared with TiC spherical particles. A minimum reflection loss (RL) of −57.0 dB at 11.8 and 3.2 GHz effective absorption bandwidth (RL < −10 dB) was achieved. Meanwhile, an optimal RL of −57 dB is also achieved at 35.8 GHz together with an even broader absorption bandwidth from 34.2 to 40 GHz (5.8 GHz in total). This excellent microwave absorption performance is attributed to the flake-like morphology, which dramatically enhances the multiple polarization loss. The method of utilizing graphene sheets as a guide to fabricate flake-like TiC not only illuminates a new strategy for fabricating transition metal carbides with specified morphology but also provides an attractive candidate for microwave absorption applications.

1.
M.
Li
,
M.
Han
,
J.
Zhou
,
Q.
Deng
,
X.
Zhou
,
J.
Xue
,
S.
Du
,
X.
Yin
, and
Q.
Huang
, “
Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption
,”
Adv. Electron. Mater.
4
(
5
),
1700617
(
2018
).
2.
Z.
Jia
,
K.
Lin
,
G.
Wu
,
H.
Xing
, and
H.
Wu
, “
Recent progresses of high-temperature microwave-absorbing materials
,”
Nano
13
(
6
),
1830005
(
2018
).
3.
F.
Qin
and
C.
Brosseau
, “
A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
,”
J. Appl. Phys.
111
,
061301
(
2012
).
4.
F.
He
,
S.
Lau
,
H. L.
Chan
, and
J.
Fan
, “
High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates
,”
Adv. Mater.
21
(
6
),
710
715
(
2009
).
5.
X.
Sun
,
M.
Yang
,
S.
Yang
,
S.
Wang
,
W.
Yin
,
R.
Che
, and
Y.
Li
, “
Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure
,”
Small
15
(
43
),
1902974
(
2019
).
6.
Z.
Li
,
X.
Wei
,
F.
Luo
,
W.
Zhou
, and
Y.
Hao
, “
Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction
,”
Ceram. Int.
40
(
1
),
2545
2549
(
2014
).
7.
Y.
Liu
,
F.
Luo
,
J.
Su
,
W.
Zhou
, and
D.
Zhu
, “
Electromagnetic and microwave absorption properties of the nickel/Ti3SiC2 hybrid powders in X-band
,”
J. Magn. Magn. Mater.
365
,
126
131
(
2014
).
8.
X.
Qiu
,
L.
Wang
,
H.
Zhu
,
Y.
Guan
, and
Q.
Zhang
, “
Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon
,”
Nanoscale
9
(
22
),
7408
7418
(
2017
).
9.
M.
Yan
,
Y.
Zhang
,
Y.
Fang
,
L.
Yu
,
Y.
Liu
, and
X.
Zhao
, “
The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes
,”
J. Mater. Sci: Mater. Electron.
29
(
23
),
20260
20270
(
2018
).
10.
Y.
Zhou
,
J.
Muhammad
,
X.
Zhang
,
D.
Wang
,
Y.
Duan
,
X.
Dong
, and
Z.
Zhang
, “
Novel nanocapsules with Co-TiC twin cores and regulable graphitic shells for superior electromagnetic wave absorption
,”
RSC Adv.
8
(
12
),
6397
6405
(
2018
).
11.
X.
Yuan
,
L.
Cheng
,
L.
Kong
,
X.
Yin
, and
L.
Zhang
, “
Preparation of titanium carbide nanowires for application in electromagnetic wave absorption
,”
J. Alloys Compd.
596
,
132
139
(
2014
).
12.
C.
Wang
,
X.
Han
,
P.
Xu
,
J.
Wang
,
Y.
Du
,
X.
Wang
,
W.
Qin
, and
T.
Zhang
, “
Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties
,”
J. Phys. Chem. C
114
(
7
),
3196
3203
(
2010
).
13.
L.
Wang
,
Y.
Guan
,
X.
Qiu
,
H.
Zhu
,
S.
Pan
,
M.
Yu
, and
Q.
Zhang
, “
Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@ metal-organic framework
,”
Chem. Eng. J.
326
,
945
955
(
2017
).
14.
H.
Wang
,
D.
Zhu
,
X.
Wang
, and
F.
Luo
, “
Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites
,”
Compos. Part A: Appl. Sci. Manuf.
93
,
10
17
(
2017
).
15.
R.
Wu
,
K.
Zhou
,
Z.
Yang
,
X.
Qian
,
J.
Wei
,
L.
Liu
,
Y.
Huang
,
L.
Kong
, and
L.
Wang
, “
Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications
,”
CrystEngComm.
15
(
3
),
570
576
(
2013
).
16.
X.
Liu
,
J.
Yu
,
C.
Cui
,
Y.
Sun
,
X.
Li
, and
Z.
Li
, “
Flower-like BiOI microsphere/Ni@ C nanocapsule hybrid composites and their efficient microwave absorbing activity
,”
J. Phys. D: Appl. Phys.
51
(
26
),
265002
(
2018
).
17.
Z.
Zhang
,
Z.
Cai
,
Y.
Zhang
,
Y.
Peng
,
Z.
Wang
,
L.
Xia
,
S.
Ma
,
Z.
Yin
,
R.
Wang
,
Y.
Cao
,
Z.
Li
, and
Y.
Huang
, “
The recent progress of MXene-based microwave absorption materials
,”
Carbon
174
,
484
499
(
2021
).
18.
Y.
Qing
,
W.
Zhou
,
F.
Luo
, and
D.
Zhu
, “
Titanium carbide (MXene) nanosheets as promising microwave absorbers
,”
Ceram. Int.
42
(
14
),
16412
16416
(
2016
).
19.
X.
Li
,
W.
You
,
C.
Xu
,
L.
Wang
,
L.
Yang
,
Y.
Li
, and
R.
Che
, “
3D seed-germination-like MXene with In situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization
,”
Nano-Micro Lett.
13
,
157
(
2021
).
20.
P. J.
Bora
,
T. R.
Suresh Kumar
, and
D. Q.
Tan
, “
Enhancement of microwave absorption bandwidth of MXene nanocomposites through macroscopic design
,”
R. Soc. Open Sci.
7
,
200456
(
2020
).
21.
S. T.
Oyama
,
J. C.
Schlatter
,
J. E.
Metcalfe
 III
, and
J. M.
Lambert
, Jr.
, “
Preparation and characterization of early transition metal carbides and nitrides
,”
Ind. Eng. Chem. Res.
27
(
9
),
1639
1648
(
1988
).
22.
S. T.
Oyama
, “
Introduction to the chemistry of transition metal carbides and nitrides
,” in
The Chemistry of Transition Metal Carbides and Nitrides
(
Springer
,
1996
), pp.
1
27
.
23.
Y.
Zhong
,
X.
Xia
,
F.
Shi
,
J.
Zhan
,
J.
Tu
, and
H. J.
Fan
, “
Transition metal carbides and nitrides in energy storage and conversion
,”
Adv. Sci.
3
(
5
),
1500286
(
2016
).
24.
X.
Xia
,
Y.
Zhang
,
D.
Chao
,
Q.
Xiong
,
Z.
Fan
,
X.
Tong
,
J.
Tu
,
H.
Zhang
, and
H. J.
Fan
, “
Tubular TiC fiber nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance
,”
Energy Environ. Sci.
8
(
5
),
1559
1568
(
2015
).
25.
H.
Zhao
,
L.
Liu
,
R.
Vellacheri
, and
Y.
Lei
, “
Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors
,”
Adv. Sci.
4
(
10
),
1700188
(
2017
).
26.
Y.
Xiao
,
J.-Y.
Hwang
, and
Y.-K.
Sun
, “
Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage
,”
J. Mater. Chem. A.
4
(
27
),
10379
10393
(
2016
).
27.
X.
Li
,
X.
Yin
,
M.
Han
,
C.
Song
,
H.
Xu
,
Z.
Hou
,
L.
Zhang
, and
L.
Cheng
, “
Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties
,”
J. Mater. Chem. C
5
(
16
),
4068
4074
(
2017
).
28.
W.
Feng
,
H.
Luo
,
Y.
Wang
,
S.
Zeng
,
L.
Deng
,
X.
Zhou
,
H.
Zhang
, and
S.
Peng
, “
Ti3C2 MXene: A promising microwave absorbing material
,”
RSC Adv.
8
(
5
),
2398
2403
(
2018
).
29.
Y.
Chang
,
C.
Mu
,
B.
Yang
,
A.
Nie
,
B.
Wang
,
J.
Xiang
,
Y.
Yang
,
F.
Wen
, and
Z.
Liu
, “
Microwave absorbing properties of two-dimensional materials GeP5 enhanced after annealing treatment
,”
Appl. Phys. Lett.
114
(
1
),
013103
(
2019
).
30.
S. D.
Perera
,
R. G.
Mariano
,
K.
Vu
,
N.
Nour
,
O.
Seitz
,
Y.
Chabal
, and
K. J.
Balkus
, Jr.
, “
Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity
,”
ACS Catal.
2
(
6
),
949
956
(
2012
).
31.
Y.-C.
Woo
,
H.-J.
Kang
, and
D. J.
Kim
, “
Formation of TiC particle during carbothermal reduction of TiO2
,”
J. Eur. Ceram. Soc.
27
(
2–3
),
719
722
(
2007
).
32.
M.
Razavi
,
M. R.
Rahimipour
, and
R.
Kaboli
, “
Synthesis of TiC nanocomposite powder from impure TiO2 and carbon black by mechanically activated sintering
,”
J. Alloys Compd.
460
(
1–2
),
694
698
(
2008
).
33.
G.
Zhang
,
Y.
Zheng
,
W.
Zhou
,
Y.
Zhao
,
J.
Zhang
,
Z.
Ke
, and
L.
Yu
, “
Microstructure and mechanical properties of Ti (C, N)-based cermets fabricated by in situ carbothermal reduction of TiO2 and subsequent liquid phase sintering
,”
Ceram. Int.
44
(
3
),
3092
3098
(
2018
).
34.
Y. K.
Hong
,
C. Y.
Lee
,
C. K.
Jeong
,
D. E.
Lee
,
K.
Kim
, and
J.
Joo
, “
Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges
,”
Rev. Sci. Instrum.
74
(
2
),
1098
1102
(
2003
).
35.
A.
Morais
,
C.
Longo
,
J. R.
Araujo
,
M.
Barroso
,
J. R.
Durrant
, and
A. F.
Nogueira
, “
Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: The role of reduced graphene oxide
,”
Phys. Chem. Chem. Phys.
18
(
4
),
2608
2616
(
2016
).
36.
J.
Liang
,
J.
Wang
,
Y.
Li
,
M.
Zhou
,
X.
Wang
,
X.
Li
, and
K.
Yu
, “
Graphene grown in situ on TiO2 hollow nanocrystals for advanced photocatalysis and lithium-ion batteries
,”
New J. Chem.
40
(
8
),
6714
6719
(
2016
).
37.
J.
Fu
,
J.
Yun
,
S.
Wu
,
L.
Li
,
L.
Yu
, and
K. H.
Kim
, “
Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor
,”
ACS Appl. Mater. Interfaces
10
(
40
),
34212
34221
(
2018
).
38.
U. S.
Heo
,
D.-W.
Kim
,
K.-S.
Kim
, and
D.-W.
Park
, “
A facile synthesis of anatase TiO2-graphene nanocomposites using plasma and heat treatment
,”
Appl. Surf. Sci.
474
,
118
126
(
2019
).
39.
F.
Han
,
S.
Luo
,
L.
Xie
,
J.
Zhu
,
W.
Wei
,
X.
Chen
,
F.
Liu
,
W.
Chen
,
J.
Zhao
, L. Dong, K. Yu, X. R. Zeng, F. Rao, L. Wang, and Y. Huang, “
Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation
,”
ACS Appl. Mater. Interfaces
11
(
8
),
8443
8452
(
2019
).
40.
Y.
He
,
R.
Gong
,
Y.
Nie
,
H.
He
, and
Z.
Zhao
, “
Optimization of two-layer electromagnetic wave absorbers composed of magnetic and dielectric materials in gigahertz frequency band
,”
J. Appl. Phys.
98
,
084903
(
2005
).
41.
W.
Liu
,
S.
Tan
,
Z.
Yang
, and
G.
Ji
, “
Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss
,”
Carbon
138
,
143
153
(
2018
).
42.
F.
Meng
,
H.
Wang
,
F.
Huang
,
Y.
Guo
,
Z.
Wang
,
D.
Hui
, and
Z.
Zhou
, “
Graphene-based microwave absorbing composites: A review and prospective
,”
Compos. Part B: Eng.
137
,
260
277
(
2018
).
43.
Y.
Liu
,
Y.
Li
,
F.
Luo
,
X.
Su
,
J.
Xu
,
J.
Wang
,
Y.
Qu
, and
Y.
Shi
, “
Mechanical, dielectric and microwave absorption properties of TiC/cordierite composite ceramics
,”
J. Mater. Sci.: Mater. Electron.
28
(
16
),
12115
12121
(
2017
).
44.
M.
Yang
,
Y.
Yuan
,
Y.
Li
,
X.
Sun
,
S.
Wang
,
L.
Liang
,
Y.
Ning
,
J.
Li
,
W.
Yin
, and
Y.
Li
, “
Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels
,”
ACS Appl. Mater. Interfaces
12
(
29
),
33128
33138
(
2020
).
45.
R.
Qiang
,
Y.
Du
,
Y.
Wang
,
N.
Wang
,
C.
Tian
,
J.
Ma
,
P.
Xu
, and
X.
Han
, “
Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption
,”
Carbon
98
,
599
606
(
2016
).
46.
G.
Wu
,
Y.
Cheng
,
Z.
Yang
,
Z.
Jia
,
H.
Wu
,
L.
Yang
,
H.
Li
,
P.
Guo
, and
H.
Lv
, “
Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior
,”
Chem. Eng. J.
333
,
519
528
(
2018
).
47.
H.
Lv
,
Y.
Guo
,
G.
Wu
,
G.
Ji
,
Y.
Zhao
, and
Z. J.
Xu
, “
Interface polarization strategy to solve electromagnetic wave interference issue
,”
ACS Appl. Mater. Interfaces
9
(
6
),
5660
5668
(
2017
).
48.
M.
Han
,
X.
Yin
,
H.
Wu
,
Z.
Hou
,
C.
Song
,
X.
Li
,
L.
Zhang
, and
L.
Cheng
, “
Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band
,”
ACS Appl. Mater. Interfaces
8
(
32
),
21011
21019
(
2016
).
49.
Y.
Jiang
,
X.
Xie
,
Y.
Chen
,
Y.
Liu
,
R.
Yang
, and
G.
Sui
, “
Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties
,”
J. Mater. Chem. C
6
(
32
),
8679
8687
(
2018
).

Supplementary Material

You do not currently have access to this content.