Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances.

1.
D.
Eversole
,
K.
Subramanian
,
R. K.
Harrison
,
F.
Bourgeois
,
A.
Yuksel
, and
A.
Ben-Yakar
, “
Femtosecond plasmonic laser nanosurgery (fs-PLN) mediated by molecularly targeted gold nanospheres at ultra-low pulse fluences
,”
Sci. Rep.
10
,
12387
(
2020
).
2.
L.
Mascaretti
and
A.
Naldoni
, “
Hot electron and thermal effects in plasmonic photocatalysis
,”
J. Appl. Phys.
128
,
041101
(
2020
).
3.
Q.
Zhang
,
G.
Li
,
X.
Liu
,
F.
Qian
,
Y.
Li
,
T. C.
Sum
,
C. M.
Lieber
, and
Q.
Xiong
, “
A room temperature low-threshold ultraviolet plasmonic nanolaser
,”
Nat. Commun.
5
,
4953
(
2014
).
4.
P.
Zijlstra
,
J.
Chon
, and
M.
Gu
, “
Five-dimensional optical recording mediated by surface plasmons in gold nanorods
,”
Nature
459
,
410
3
(
2009
).
5.
Y.
Chen
,
D. M.
Bagnall
,
H.-J.
Koh
,
K.-T.
Park
,
K.
Hiraga
,
Z.
Zhu
, and
T.
Yao
, “
Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization
,”
J. Appl. Phys.
84
,
3912
3918
(
1998
).
6.
J.
Fang
,
H.
Fan
,
Y.
Ma
,
Z.
Wang
, and
Q.
Chang
, “
Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis
,”
Appl. Surf. Sci.
332
,
47
54
(
2015
).
7.
L.
Novotny
and
N. F.
van Hulst
, “
Antennas for light
,”
Nat. Photon.
5
,
83
90
(
2011
).
8.
A. V.
Zayats
and
I. I.
Smolyaninov
, “
Near-field photonics: Surface plasmon polaritons and localized surface plasmons
,”
J. Opt. A: Pure Appl. Opt.
5
,
S16
S50
(
2003
).
9.
R.
Jiang
,
B.
Li
,
C.
Fang
, and
J.
Wang
, “
Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications
,”
Adv. Mater.
26
,
5274
5309
(
2014
).
10.
S.
Gwo
and
C.-K.
Shih
, “
Semiconductor plasmonic nanolasers: Current status and perspectives
,”
Rep. Prog. Phys.
79
,
086501
(
2016
).
11.
C.
Langhammer
,
M.
Schwind
,
B.
Kasemo
, and
I.
Zorić
, “
Localized surface plasmon resonances in aluminum nanodisks
,”
Nano Lett.
8
,
1461
1471
(
2008
).
12.
M. W.
Knight
,
N. S.
King
,
L.
Liu
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
, “
Aluminum for plasmonics
,”
ACS Nano
8
,
834
840
(
2014
).
13.
D.
Gérard
and
S. K.
Gray
, “
Aluminium plasmonics
,”
J. Phys. D: Appl. Phys.
48
,
184001
(
2015
).
14.
J.
Martin
and
J.
Plain
, “
Fabrication of aluminium nanostructures for plasmonics
,”
J. Phys. D: Appl. Phys.
48
,
184002
(
2015
).
15.
J.
Olson
,
A.
Manjavacas
,
L.
Liu
,
W.-S.
Chang
,
B.
Foerster
,
N. S.
King
,
M. W.
Knight
,
P.
Nordlander
,
N. J.
Halas
, and
S.
Link
, “
Vivid, full-color aluminum plasmonic pixels
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
14348
14353
(
2014
).
16.
F.
Zhang
,
J.
Martin
, and
J.
Plain
, “
Long-term stability of plasmonic resonances sustained by evaporated aluminum nanostructures
,”
Opt. Mater. Express
9
,
85
94
(
2019
).
17.
Y.-H.
Chou
,
Y.-M.
Wu
,
K.-B.
Hong
,
B.-T.
Chou
,
J.-H.
Shih
,
Y.-C.
Chung
,
P.-Y.
Chen
,
T.-R.
Lin
,
C.-C.
Lin
,
S.-D.
Lin
, and
T.-C.
Lu
, “
High-operation-temperature plasmonic nanolasers on single-crystalline aluminum
,”
Nano Lett.
16
,
3179
3186
(
2016
).
18.
J.
Lu
,
J.
Li
,
C.
Xu
,
Y.
Li
,
J.
Dai
,
Y.
Wang
,
Y.
Lin
, and
S.
Wang
, “
Direct resonant coupling of al surface plasmon for ultraviolet photoluminescence enhancement of zno microrods
,”
ACS Appl. Mater. Interfaces
6
,
18301
18305
(
2014
).
19.
M.
Norek
,
G.
Łuka
, and
M.
Włodarski
, “
Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays
,”
Appl. Surf. Sci.
384
,
18
26
(
2016
).
20.
S.
Liu
,
M.-Y.
Li
,
J.
Zhang
,
D.
Su
,
Z.
Huang
,
S.
Kunwar
, and
J.
Lee
, “
Self-assembled Al nanostructure/ZnO quantum dot heterostructures for high responsivity and fast UV photodetector
,”
Nano-Micro Lett.
12
,
1901606
(
2020
).
21.
J.
Lu
,
C.
Xu
,
J.
Dai
,
J.
Li
,
Y.
Wang
,
Y.
Lin
, and
P.
Li
, “
Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity
,”
ACS Photon.
2
,
73
77
(
2015
).
22.
K.
Wu
,
Y.
Lu
,
H.
He
,
J.
Huang
,
B.
Zhao
, and
Z.
Ye
, “
Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles
,”
J. Appl. Phys.
110
,
023510
(
2011
).
23.
M.
Jiang
,
L.
Zheng
,
Y.
Li
,
H.
Shan
,
C.
Chi
,
Z.
Liu
,
Y.
Huang
,
Z.
Dang
,
F.
Lin
, and
Z.
Fang
, “
Tailoring ZnO spontaneous emission with plasmonic radiative local density of states using cathodoluminescence microscopy
,”
J. Phys. Chem. C
124
,
13886
13893
(
2020
).
24.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
,
10871
10875
(
2004
).
25.
N.
Félidj
,
G.
Laurent
,
J.
Aubard
,
G.
Lévi
,
A.
Hohenau
,
J.
Krenn
, and
F.
Aussenegg
, “
Grating-induced plasmon mode in gold nanoparticle arrays
,”
J. Chem. Phys.
123
,
221103
(
2005
).
26.
B.
Auguié
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
27.
G.
Vecchi
,
V.
Giannini
, and
J.
Gómez Rivas
, “
Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas
,”
Phys. Rev. B
80
,
201401
(
2009
).
28.
D.
Khlopin
,
F.
Laux
,
W. P.
Wardley
,
J.
Martin
,
G. A.
Wurtz
,
J.
Plain
,
N.
Bonod
,
A. V.
Zayats
,
W.
Dickson
, and
D.
Gérard
, “
Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays
,”
J. Opt. Soc. Am. B
34
,
691
700
(
2017
).
29.
V.
Babicheva
,
I.
Staude
, and
D.
Gérard
, “
Collective effects and coupling phenomena in resonant optical metasurfaces: Introduction
,”
J. Opt. Soc. Am. B
36
,
CEC1
CEC3
(
2019
).
30.
G.
Vecchi
,
V.
Giannini
, and
J.
Gómez Rivas
, “
Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas
,”
Phys. Rev. Lett.
102
,
146807
(
2009
).
31.
S.
Murai
,
K.
Agata
, and
K.
Tanaka
, “
Photoluminescence from an emitter layer sandwiched between the stack of metasurfaces
,”
J. Appl. Phys.
129
,
183101
(
2021
).
32.
Y.
Gao
,
S.
Murai
,
K.
Shinozaki
,
S.
Ishii
, and
K.
Tanaka
, “
Aluminum for near infrared plasmonics: Amplified up-conversion photoluminescence from core–shell nanoparticles on periodic lattices
,”
Adv. Opt. Mater.
9
,
2001040
(
2021
).
33.
N. A.
Suvorova
,
I. O.
Usov
,
L.
Stan
,
R. F.
DePaula
,
A. M.
Dattelbaum
,
Q. X.
Jia
, and
A. A.
Suvorova
, “
Structural and optical properties of ZnO thin films by RF magnetron sputtering with rapid thermal annealing
,”
Appl. Phys. Lett.
92
,
141911
(
2008
).
34.
F.
Zhang
,
F.
Tang
,
X.
Xu
,
P.-M.
Adam
,
J.
Martin
, and
J.
Plain
, “
Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface
,”
Nanoscale
12
,
23173
23182
(
2020
).
35.
V.
Giannini
,
A. I.
Fernández-Domínguez
,
S. C.
Heck
, and
S. A.
Maier
, “
Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters
,”
Chem. Rev.
111
,
3888
3912
(
2011
).
36.
J.
Goffard
,
D.
Gérard
,
P.
Miska
,
A.-L.
Baudrion
,
R.
Deturche
, and
J.
Plain
, “
Plasmonic engineering of spontaneous emission from silicon nanocrystals
,”
Sci. Rep.
3
,
2672
(
2013
).
You do not currently have access to this content.