Despite the ultimate performance of the existing cascade lasers, simple interband emitters in the mid-infrared (IR) can still be of interest as a cheaper and widely tunable alternative for some applications. In this work, we show mid-infrared stimulated emission (SE) at 5–6 μm wavelength from an optically pumped mercury–cadmium–telluride quantum well (QW) heterostructures at temperatures up to 200 K. At lower temperatures, the SE threshold appears to be mostly determined by conventional eeh Auger recombination, while the contribution of alternative QW-specific ehh Auger processes is limited. At higher temperatures, we establish heating of the electron gas by pumping radiation as a primary factor responsible for the thermal quenching of the SE. Consequently, both pumping scheme and QW designs should be carefully revised to minimize carrier heating in order to realize near-to-mid-IR optical converters operating close to ambient temperature. We suggest using low-barrier QWs to minimize excessive heat introduced in the QW upon carrier capture and also to eliminate eeh Auger processes involving excited QW subbands. Thus, mid-infrared HgCdTe lasers are expected to reach operating temperatures readily attainable under thermoelectric cooling.

1.
A.
Rogalski
, “
Hgcdte infrared detector material: History, status and outlook
,”
Rep. Prog. Phys.
68
,
2267
(
2005
).
2.
A.
Rogalski
, “
Next decade in infrared detectors
,”
Proc. SPIE
10433
,
104330L
(
2017
).
3.
J. R.
Meyer
,
C. L.
Canedy
,
M.
Kim
,
C. S.
Kim
,
C. D.
Merritt
,
W. W.
Bewley
, and
I.
Vurgaftman
, “
Comparison of Auger coefficients in type I and type II quantum well midwave infrared lasers
,”
IEEE J. Quantum Electron.
57
,
1
(
2021
).
4.
A. R.
Beattie
and
P. T.
Landsberg
, “
Auger effect in semiconductors
,”
Proc. R. Soc. A
249
,
16
(
1958
).
5.
B. A.
Bernevig
,
T. L.
Hughes
, and
S. C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
(
2006
).
6.
S. A.
Tarasenko
,
M. V.
Durnev
,
M. O.
Nestoklon
,
E. L.
Ivchenko
,
J.-W.
Luo
, and
A.
Zunger
, “
Split Dirac cones in HgTe/CdTe quantum wells due to symmetry-enforced level anticrossing at interfaces
,”
Phys. Rev. B
91
,
081302
(
2015
).
7.
S. V.
Morozov
,
V. V.
Rumyantsev
,
M. A.
Fadeev
,
M. S.
Zholudev
,
K. E.
Kudryavtsev
,
A. V.
Antonov
,
A. M.
Kadykov
,
A. A.
Dubinov
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
, and
V. I.
Gavrilenko
, “
Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm
,”
Appl. Phys. Lett.
111
,
192101
(
2017
).
8.
J.
Bleuse
,
N.
Magnea
,
L.
Ulmer
,
J. L.
Pautrat
, and
H.
Mariette
, “
Room-temperature laser emission near 2 μm from an optically pumped HgCdTe separate-confinement heterostructure
,”
J. Cryst. Growth
117
,
1046
(
1992
).
9.
J.
Bleuse
,
J.
Bonnet-Gamard
,
G.
Mula
,
N.
Magnea
, and
P.
Jean-Louis
, “
Laser emission in HgCdTe in the 2–3.5 μm range
,”
J. Cryst. Growth
197
,
529
(
1999
).
10.
A. A.
Andronov
,
Y. N.
Nozdrin
,
A. V.
Okomel’kov
,
N. N.
Mikhailov
,
G. Y.
Sidorov
, and
V. S.
Varavin
, “
Stimulated emission from optically excited CdxHg1−xTe structures at room temperature
,”
J. Lumin.
132
,
612
(
2012
).
11.
C.
Roux
,
E.
Hadji
, and
J.-L.
Pautrat
, “
Room-temperature optically pumped CdHgTe vertical-cavity surface-emitting laser for the 1.5 μm range
,”
Appl. Phys. Lett.
75
,
1661
(
1999
).
12.
M. A.
Fadeev
,
A. O.
Troshkin
,
A. A.
Dubinov
,
V. V.
Utochkin
,
A. A.
Razova
,
V. V.
Rumyantsev
,
V. Y.
Aleshkin
,
V. I.
Gavrilenko
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
, and
S. V.
Morozov
, “
Mid-infrared stimulated emission in HgCdTe/CdHgTe quantum well heterostructures at room temperature
,”
Opt. Eng.
60
,
082006
(
2021
).
13.
E.
Tournié
and
A. N.
Baranov
, “
Mid-infrared semiconductor lasers: A review
,”
Semicond. Semimetals
86
,
183
(
2012
).
14.
L.
Cerutti
,
A.
Vicet
, and
E.
Tournie
,
Interband Mid-Infrared Lasers. Mid-Infrared Optoelectronics Materials, Devices, and Applications
(
Woodhead Publishing Series in Electronic and Optical Materials
,
2020
), pp.
91
130
.
15.
A.
Ishida
and
S.
Nakashima
, “
PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate
,”
Appl. Phys. Lett.
111
,
161104
(
2017
).
16.
M. S.
Vitiello
,
G.
Scalari
,
B.
Williams
, and
P.
de Natale
, “
Quantum cascade lasers: 20 years of challenges
,”
Opt. Express
23
,
5167
(
2015
).
17.
J. R.
Meyer
,
W. W.
Bewley
,
C. L.
Canedy
,
C. S.
Kim
,
M.
Kim
,
C. D.
Merritt
, and
I.
Vurgaftman
, “
The interband cascade laser
,”
Photonics
7
,
75
(
2020
).
18.
J. P.
Zanatta
,
F.
Noël
,
P.
Ballet
,
N.
Hdadach
,
A.
Million
,
G.
Destefanis
,
E.
Mottin
,
C.
Kopp
,
E.
Picard
, and
E.
Hadji
, “
HgCdTe molecular beam epitaxy material for microcavity light emitters: Application to gas detection in the 2–6 μm range
,”
J. Electron. Mater.
32
,
602
(
2003
).
19.
M. A.
Fadeev
,
V. V.
Rumyantsev
,
A. M.
Kadykov
,
A. A.
Dubinov
,
A. V.
Antonov
,
K. E.
Kudryavtsev
,
S. A.
Dvoretskii
,
N. N.
Mikhailov
,
V. I.
Gavrilenko
, and
S. V.
Morozov
, “
Stimulated emission in the 2.8–3.5 μm wavelength range from Peltier cooled HgTe/CdHgTe quantum well heterostructures
,”
Opt. Express
26
(
10
),
12755
(
2018
).
20.
V.
Rumyantsev
,
M.
Fadeev
,
V.
Aleshkin
,
N.
Kulikov
,
V.
Utochkin
,
N.
Mikhailov
,
S.
Dvoretskii
,
S.
Pavlov
,
H.-W.
Hübers
,
V.
Gavrilenko
,
C.
Sirtori
,
Z. F.
Krasilnik
, and
S.
Morozov
, “
Carrier recombination, long-wavelength photoluminescence and stimulated emission in HgCdTe quantum well heterostructures
,”
Phys. Status Solidi B
256
,
1800546
(
2019
).
21.
V. V.
Utochkin
,
K. E.
Kudryavtsev
,
M. A.
Fadeev
,
A. A.
Razova
,
D. S.
Bykov
,
V.
Ya Aleshkin
,
A. A.
Dubinov
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
V. V.
Rumyantsev
,
V. I.
Gavrilenko
, and
S. V.
Morozov
, “
Mid-IR stimulated emission in Hg(Cd)Te/CdHgTe quantum well structures up to 200 K due to suppressed Auger recombination
,”
Laser Phys.
31
,
015801
(
2021
).
22.
J. M.
Arias
,
M.
Zandian
,
R.
Zucca
, and
J.
Singh
, “
Hgcdte infrared diode lasers grown by MBE
,”
Semicond. Sci. Technol.
8
,
S255
(
1993
).
23.
F.
Bartoli
,
R.
Allen
,
L.
Esterowitz
, and
M.
Kruer
, “
Auger-limited carrier lifetimes in HgCdTe at high excess carrier concentrations
,”
J. Appl. Phys.
45
,
2150
(
1974
).
24.
K.
Jóźwikowski
,
M.
Kopytko
, and
A.
Rogalski
, “
The bulk generation-recombination processes and the carrier lifetime in midwave infrared and long-wave infrared liquid nitrogen cooled HgCdTe alloys
,”
J. Appl. Phys.
112
,
033718
(
2012
).
25.
H.
Wen
,
B.
Pinkie
, and
E.
Bellotti
, “
Direct and phonon-assisted indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs computed using Green’s function formalism
,”
J. Appl. Phys.
118
,
015702
(
2015
).
26.
C. M.
Ciesla
,
B. N.
Murdin
,
T. J.
Phillips
,
A. M.
White
,
A. R.
Beattie
,
C. J. G. M.
Langerak
,
C. T.
Elliott
, and
C. R.
Pidgeon
, “
Auger recombination dynamics in highly excited HgCdTe
,”
Phys. Status Solidi B
204
,
121
(
1997
).
27.
S. V.
Morozov
,
M. S.
Joludev
,
A. V.
Antonov
,
V. V.
Rumyantsev
,
V. I.
Gavrilenko
,
V. Y.
Aleshkin
,
A. A.
Dubinov
,
N. N.
Mikhailov
,
S. A.
Dvoretskiy
,
O.
Drachenko
,
S.
Winnerl
,
H.
Schneider
, and
M.
Helm
, “
Study of lifetimes and photoconductivity relaxation in heterostructures with HgxCd1–xTe/CdyHg1–yTe quantum wells
,”
Semiconductors
46
,
1362
(
2012
).
28.
S.
Ruffenach
,
A.
Kadykov
,
V. V.
Rumyantsev
,
J.
Torres
,
D.
Coquillat
,
D.
But
,
S. S.
Krishtopenko
,
C.
Consejo
,
W.
Knap
,
S.
Winnerl
,
M.
Helm
,
M. A.
Fadeev
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
,
V. I.
Gavrilenko
,
S. V.
Morozov
, and
F.
Teppe
, “
HgCdTe-based heterostructures for terahertz photonics
,”
APL Mater.
5
,
035503
(
2017
).
29.
K. E.
Kudryavtsev
,
V. V.
Rumyantsev
,
V. Y.
Aleshkin
,
A. A.
Dubinov
,
V. V.
Utochkin
,
M. A.
Fadeev
,
N. N.
Mikhailov
,
G.
Alymov
,
D.
Svintsov
,
V. I.
Gavrilenko
, and
S. V.
Morozov
, “
Temperature limitations for stimulated emission in 3–4 μm range due to threshold and non-threshold Auger recombination in HgTe/CdHgTe quantum wells
,”
Appl. Phys. Lett.
117
,
083103
(
2020
).
30.
C. H.
Grein
,
P. M.
Young
, and
H.
Ehrenreich
, “
Minority carrier lifetimes in ideal InGaSb/InAs superlattices
,”
Appl. Phys. Lett.
61
,
2905
(
1992
).
31.
M.
Asada
,
A.
Kameyama
, and
Y.
Suematsu
, “
Gain and intervalence band absorption in quantum-well lasers
,”
IEEE J. Quantum Electron.
20
,
745
(
1984
).
32.
M. E.
Flatté
,
C. H.
Grein
,
H.
Ehrenreich
,
R. H.
Miles
, and
H.
Cruz
, “
Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers
,”
J. Appl. Phys.
78
,
4552
(
1995
).
33.
I.
Vurgaftman
and
J. R.
Meyer
, “
High-temperature HgTe/CdTe multiple-quantum-well lasers
,”
Opt. Express
2
,
137
(
1998
).
34.
I.
Vurgaftman
,
J. R.
Meyer
,
J. M.
Dell
,
T. A.
Fisher
, and
L.
Faraone
, “
Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface emitting lasers
,”
J. Appl. Phys.
83
,
4286
(
1998
).
35.
N. N.
Mikhailov
,
R. N.
Smirnov
,
S. A.
Dvoretsky
,
Y. G.
Sidorov
,
V. A.
Shvets
,
E. V.
Spesivtsev
, and
S. V.
Rykhlitski
, “
Growth of Hg1−xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control
,”
Int. J. Nanotechnol.
3
,
120
(
2006
).
36.
S.
Dvoretsky
,
N.
Mikhailov
,
Y.
Sidorov
,
V.
Shvets
,
S.
Danilov
,
B.
Wittman
, and
S.
Ganichev
, “
Growth of HgTe quantum wells for IR to THz detectors
,”
J. Electron. Mater.
39
,
918
(
2010
).
37.
G.
Alymov
,
V.
Rumyantsev
,
S.
Morozov
,
V.
Gavrilenko
,
V.
Aleshkin
, and
D.
Svintsov
, “
Fundamental limits to far-infrared lasing in Auger-suppressed HgCdTe quantum wells
,”
ACS Photonics
7
,
98
(
2020
).
38.
M.
Zholudev
,
F.
Teppe
,
M.
Orlita
,
C.
Consejo
,
J.
Torres
,
N.
Dyakonova
,
M.
Czapkiewicz
,
J.
Wróbel
,
G.
Grabecki
,
N.
Mikhailov
,
S.
Dvoretskii
,
A.
Ikonnikov
,
K.
Spirin
,
V.
Aleshkin
,
V.
Gavrilenko
, and
W.
Knap
, “
Magnetospectroscopy of two-dimensional HgTe-based topological insulators around the critical thickness
,”
Phys. Rev. B
86
,
205420
(
2012
).
39.
G. M.
Minkov
,
V. Y.
Aleshkin
,
O. E.
Rut
,
A. A.
Sherstobitov
,
A. V.
Germanenko
,
S. A.
Dvoretski
, and
N. N.
Mikhailov
, “
Electron mass in a HgTe quantum well: Experiment versus theory
,”
Physica E
116
,
113742
(
2020
).
40.
J.
Polit
, “
Model of the two well potential for Hg-atoms in the Hg1−xCdxTe alloy lattice
,”
Bull. Pol. Acad. Sci. Tech. Sci.
59
,
331
(
2011
).
41.
C. H.
Grein
,
M. E.
Flatté
, and
Y.
Chang
, “
Modeling of recombination in HgCdTe
,”
J. Electron. Mater.
37
,
1415
(
2008
).
42.
V. Y.
Aleshkin
,
V. V.
Rumyantsev
,
K. E.
Kudryavtsev
,
A. A.
Dubinov
,
V. V.
Utochkin
,
M. A.
Fadeev
,
G.
Alymov
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
F.
Teppe
,
V. I.
Gavrilenko
, and
S. V.
Morozov
,
J. Appl. Phys.
129
,
133106
(
2021
).
43.
V. Y.
Aleshkin
,
A. A.
Dubinov
,
V. V.
Rumyantsev
, and
S. V.
Morozov
, “
Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30–70 meV bandgap
,”
J. Phys. Condens. Matter
31
,
425301
(
2019
).
44.
J.
Garland
, “
Chap. 7: MBE growth of mercury cadmium telluride
,” in
Mercury Cadmium Telluride: Growth, Properties and Applications
, edited by
P.
Capper
and
J. W.
Garland
(
John Wiley & Sons Ltd.
,
West Sussex
,
2011
), pp.
131
149
.
45.
M.
Zandian
,
A. C.
Chen
,
D. D.
Edwall
,
J. G.
Pasko
, and
J. M.
Arias
, “
p-type arsenic doping of Hg1−xCdxTe by molecular beam epitaxy
,”
Appl. Phys. Lett.
71
,
2815
(
1997
).
46.
V. M.
Bazovkin
,
S. A.
Dvoretsky
,
A. A.
Guzev
,
A. P.
Kovchavtsev
,
D. V.
Marin
,
V. G.
Polovinkin
,
I. V.
Sabinina
,
G. Y.
Sidorov
,
A. V.
Tsarenko
,
V. V.
Vasil’ev
,
V. S.
Varavin
, and
M. V.
Yakushev
, “
High operating temperature SWIR p+–n FPA based on MBE-grown HgCdTe/Si(013)
,”
Infrared Phys. Technol.
76
,
72
(
2016
).
You do not currently have access to this content.