The interplay between ultrafast laser focusing conditions, emission intensity, expansion dynamics, and ablation mechanisms is critical to the detection of light isotopes relevant to nuclear energy, forensics, and geochemistry applications. Here, we study deuterium (2Hα) emission in plasmas generated from femtosecond laser ablation of a Zircaloy-4 target with a deuterium concentration of 37 at. %. Changes in emission intensity, plume morphology, crater dimensions, and surface modifications were investigated for varying focusing lens positions, where the laser was focused behind, at, and in front of the target. Spatially resolved optical emission spectroscopy and spectrally integrated plasma imaging were performed to investigate emission spectral features and plume morphology. Laser ablation crater dimensions and morphology were analyzed via optical profilometry and scanning electron microscopy. The 2Hα emission intensity showed significant reduction at the geometrical focal point or when the focal point is in front of the target. For all laser spot sizes, a two-component plume was observed but with different temporal histories. At the best focal point, the plume was spherical. When the laser was focused behind the target, the plume was elongated and propagated to farther distances than for the best focal position. In contrast, when the laser was focused in front of the target, filaments were generated in the beam path, and filament-plasma coupling occurred. By focusing the laser behind the target, the amount of material removal in the laser ablation process can be significantly reduced while still generating a plasma with a sufficient 2Hα emission signal for analysis.

1.
L. J.
Radziemski
and
D. A.
Cremers
,
Lasers-Induced Plasmas and Applications
(
Marcel Dekker
,
New York
,
1989
).
2.
X. W.
Li
,
W. F.
Wei
,
J.
Wu
,
S. L.
Jia
, and
A. C.
Qiu
, “
The influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere
,”
J. Appl. Phys.
113
,
243304
(
2013
).
3.
E. J.
Kautz
,
M. C.
Phillips
, and
S. S.
Harilal
, “
Unraveling spatio-temporal chemistry evolution in laser ablation plumes and its relation to initial plasma conditions
,”
Anal. Chem.
92
,
13839
(
2020
).
4.
W.
Xu
,
A.
Chen
,
Q.
Wang
,
D.
Zhang
,
Y.
Wang
,
S.
Li
,
Y.
Jiang
, and
M.
Jin
, “
Generation of high-temperature and low-density plasma with strong spectral intensity by changing the distance between the focusing lens and target surface in femtosecond laser-induced breakdown spectroscopy
,”
J. Anal. At. Spectrom.
34
,
1018
(
2019
).
5.
S.
Harilal
, “
Influence of spot size on propagation dynamics of laser-produced tin plasma
,”
J. Appl. Phys.
102
,
123306
(
2007
).
6.
J.
Aguilera
and
C.
Aragón
, “
Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part II: Effect of the focusing distance and the pulse energy
,”
Spectrochim. Acta, Part B
63
,
793
(
2008
).
7.
H.
Schmidt
,
J.
Ihlemann
,
B.
Wolff-Rottke
,
K.
Luther
, and
J.
Troe
, “
Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained
,”
J. Appl. Phys.
83
,
5458
(
1998
).
8.
S.
Martin
,
A.
Hertwig
,
M.
Lenzner
,
J.
Krüger
, and
W.
Kautek
, “
Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses
,”
Appl. Phys. A
77
,
883
(
2003
).
9.
O.
Armbruster
,
A.
Naghilou
,
M.
Kitzler
, and
W.
Kautek
, “
Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel
,”
Appl. Surf. Sci.
396
,
1736
(
2017
).
10.
R.
Junjuri
,
S. A.
Rashkovskiy
, and
M. K.
Gundawar
, “
Dependence of radiation decay constant of laser produced copper plasma on focal position
,”
Phys. Plasmas
26
,
122107
(
2019
).
11.
S.
Harilal
,
P.
Diwakar
, and
G.
Miloshevsky
, “Ultrafast and filament-LIBS,” in Laser-Induced Breakdown Spectroscopy (Elsevier, 2020), pp. 139–166.
12.
S. S.
Harilal
,
B. E.
Brumfield
,
N. L.
LaHaye
,
K. C.
Hartig
, and
M. C.
Phillips
, “
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
,”
Appl. Phys. Rev.
5
,
021301
(
2018
).
13.
P.
Sankar
,
H.
Shashikala
, and
R.
Philip
, “
Effect of laser beam size on the dynamics of ultrashort laser-produced aluminum plasma in vacuum
,”
Phys. Plasmas
26
,
013302
(
2019
).
14.
S.
Harilal
,
P.
Diwakar
,
M.
Polek
, and
M.
Phillips
, “
Morphological changes in ultrafast laser ablation plumes with varying spot size
,”
Opt. Exp.
23
,
15608
(
2015
).
15.
M. E.
Shaheen
and
B. J.
Fryer
, “
Femtosecond laser ablation of brass: A study of surface morphology and ablation rate
,”
Laser Part. Beams
30
,
473
(
2012
).
16.
K.
Anoop
,
S.
Harilal
,
R.
Philip
,
R.
Bruzzese
, and
S.
Amoruso
, “
Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma
,”
J. Appl. Phys.
120
,
185901
(
2016
).
17.
A.
Rudenko
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J.-P.
Colombier
, “
Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations
,”
Phys. Rev. B
99
,
235412
(
2019
).
18.
A.
Hayat
,
S.
Bashir
,
D.
Strickland
,
M.
Shahid Rafique
,
B.
Wales
,
S.
Al-Tuairqi
, and
J. H.
Sanderson
, “
The role of laser fluence and ambient environments on femtosecond laser induced breakdown spectroscopy and on surface morphology of Mg and Zr
,”
J. Appl. Phys.
125
,
083302
(
2019
).
19.
R.
Stoian
,
D.
Ashkenasi
,
A.
Rosenfeld
, and
E.
Campbell
, “
Coulomb explosion in ultrashort pulsed laser ablation of Al2O3
,”
Phys. Rev. B
62
,
13167
(
2000
).
20.
M.
Ball
and
M.
Wietschel
, “
The future of hydrogen—Opportunities and challenges
,”
Int. J. Hydrogen Energy
34
,
615
(
2009
).
21.
A. T.
Motta
,
L.
Capolungo
,
L.-Q.
Chen
,
M. N.
Cinbiz
,
M. R.
Daymond
,
D. A.
Koss
,
E.
Lacroix
,
G.
Pastore
,
P.-C. A.
Simon
,
M. R.
Tonks
et al., “
Hydrogen in zirconium alloys: A review
,”
J. Nucl. Mater.
518
,
440
(
2019
).
22.
L.
Mercadier
,
J.
Hermann
,
C.
Grisolia
, and
A.
Semerok
, “
Plume segregation observed in hydrogen and deuterium containing plasmas produced by laser ablation of carbon fiber tiles from a fusion reactor
,”
Spectrochim. Acta, Part B
65
,
715
(
2010
).
23.
S.
Schröder
,
P.-Y.
Meslin
,
O.
Gasnault
,
S.
Maurice
,
A.
Cousin
,
R.
Wiens
,
W.
Rapin
,
M.
Dyar
,
N.
Mangold
,
O.
Forni
et al., “
Hydrogen detection with ChemCam at Gale crater
,”
Icarus
249
,
43
(
2015
).
24.
D.
Zhao
,
D.
Wu
,
J.
Oelmann
,
S.
Brezinsek
,
Q.
Xiao
,
R.
Yi
,
L.
Cai
, and
H.
Ding
, “
Highly depth-resolved characterization of fusion-related tungsten material based on picosecond laser-induced breakdown spectroscopy
,”
J. Anal. At. Spectrom.
35
,
2867
(
2020
).
25.
S.
Almaviva
,
L.
Caneve
,
F.
Colao
,
V.
Lazic
,
G.
Maddaluno
,
P.
Mosetti
,
A.
Palucci
,
A.
Reale
,
P.
Gasior
,
W.
Gromelski
et al., “
LIBS measurements inside the FTU vessel mock-up by using a robotic arm
,”
Fusion Eng. Des.
157
,
111685
(
2020
).
26.
N.
Thomas
,
B. L.
Ehlmann
,
D.
Anderson
,
S. M.
Clegg
,
O.
Forni
,
S.
Schröder
,
W.
Rapin
,
P.-Y.
Meslin
,
J.
Lasue
,
D. M.
Delapp
et al.,
Characterization of hydrogen in basaltic materials with laser-induced breakdown spectroscopy for application to MSL ChemCam data
,”
J. Geophys. Res. E: Planets
123
,
1996
, (
2018
).
27.
M.
Burger
,
P.
Skrodzki
,
L.
Finney
,
J.
Hermann
,
J.
Nees
, and
I.
Jovanovic
, “
Isotopic analysis of deuterated water via single-and double-pulse laser-induced breakdown spectroscopy
,”
Phys. Plasmas
25
,
083115
(
2018
).
28.
M.
Pardede
,
T.
Lie
,
J.
Iqbal
,
M.
Bilal
,
R.
Hedwig
,
M.
Ramli
,
A.
Khumaeni
,
W.
Budi
,
N.
Idris
,
S.
Abdulmadjid
et al., “
H-D analysis employing energy transfer from metastable excited-state he in double-pulse LIBS with low-pressure He gas
,”
Anal. Chem.
91
,
1571
(
2018
).
29.
K. H.
Kurniawan
,
M. O.
Tjia
, and
K.
Kagawa
, “
Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium
,”
Appl. Spectrosc. Rev.
49
,
323
(
2014
).
30.
E. J.
Kautz
,
A.
Devaraj
,
D.
Senor
, and
S. S.
Harilal
, “
Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy
,”
Opt. Exp.
29
,
4936
(
2021
).
31.
E. J.
Kautz
,
E.
Ronnebro
,
A.
Devaraj
,
D.
Senor
, and
S. S.
Harilal
, “
Detection of hydrogen isotopes in Zircaloy-4 via femtosecond LIBS
,”
J. Anal. At. Spectrom.
36
,
1217
(
2021
).
32.
Y.
Tao
,
S.
Harilal
,
M.
Tillack
,
K.
Sequoia
,
B.
O’Shay
, and
F.
Najmabadi
, “
Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma
,”
Opt. Lett.
31
,
2492
(
2006
).
33.
M. E.
Shaheen
,
J. E.
Gagnon
, and
B. J.
Fryer
, “
Scanning electron microscope studies on laser ablation of solids
,”
Laser Part. Beams
37
,
101
(
2019
).
34.
Y. B.
Zeldovich
,
Y. P.
Raizer
,
W.
Hayes
, and
R.
Probstein
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic Press
,
New York
,
1967
), Vol. 2.
35.
K.
Okamuro
,
M.
Hashida
,
Y.
Miyasaka
,
Y.
Ikuta
,
S.
Tokita
, and
S.
Sakabe
, “
Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation
,”
Phys. Rev. B
82
,
165417
(
2010
).
36.
O.
Varlamova
,
C.
Martens
,
M.
Ratzke
, and
J.
Reif
, “
Genesis of femtosecond-induced nanostructures on solid surfaces
,”
Appl. Opt.
53
,
I10
(
2014
).
37.
A. N.
Volkov
, “
Splitting of laser-induced neutral and plasma plumes: Hydrodynamic origin of bimodal distributions of vapor density and plasma emission intensity
,”
J. Phys. D
54
,
37LT01
(
2021
).
38.
S. S.
Harilal
,
C. V.
Bindhu
,
M. S.
Tillack
,
F.
Najmabadi
, and
A. C.
Gaeris
, “
Plume splitting and sharpening in laser-produced aluminium plasma
,”
J. Phys. D
35
,
2935
(
2002
).
39.
C.
Focsa
,
S.
Gurlui
,
P.
Nica
,
M.
Agop
, and
M.
Ziskind
, “
Plume splitting and oscillatory behavior in transient plasmas generated by high-fluence laser ablation in vacuum
,”
Appl. Surf. Sci.
424
,
299
(
2017
).
40.
R.
Wood
,
K.-R.
Chen
,
J.
Leboeuf
,
A.
Puretzky
, and
D.
Geohegan
, “
Dynamics of plume propagation and splitting during pulsed-laser ablation
,”
Phys. Rev. Lett.
79
,
1571
(
1997
).
41.
F.
Claeyssens
,
A.
Cheesman
,
S. J.
Henley
, and
M. N.
Ashfold
, “
Studies of the plume accompanying pulsed ultraviolet laser ablation of zinc oxide
,”
J. Appl. Phys.
92
,
6886
(
2002
).
42.
E. J.
Kautz
,
J.
Yeak
,
B. E.
Bernacki
,
M. C.
Phillips
, and
S. S.
Harilal
, “
Expansion dynamics and chemistry evolution in ultrafast laser filament produced plasmas
,”
Phys. Chem. Chem. Phys.
22
,
8304
(
2020
).
43.
A.
Miloshevsky
,
M. C.
Phillips
,
S. S.
Harilal
,
P.
Dressman
, and
G.
Miloshevsky
, “
Generation of nanoparticles by ultrafast laser ablation of Al: Molecular dynamics study
,”
Phys. Rev. Mater.
1
,
063602
(
2017
).
44.
M.
Burger
,
P. J.
Skrodzki
,
L. A.
Finney
,
J.
Nees
, and
I.
Jovanovic
, “
Remote detection of uranium using self-focusing intense femtosecond laser pulses
,”
Remote Sens.
12
,
1281
(
2020
).
45.
S. A.
Kalam
,
S. B. M.
Rao
,
M.
Jayananda
, and
S. V.
Rao
, “
Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials
,”
J. Anal. At. Spectrom.
35
,
3007
(
2020
).
46.
S. S.
Harilal
,
J.
Yeak
,
B. E.
Brumfield
, and
M. C.
Phillips
, “
Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy
,”
Opt. Exp.
24
,
17941
(
2016
).
47.
P. P.
Kiran
,
S.
Bagchi
,
S. R.
Krishnan
,
C.
Arnold
,
G. R.
Kumar
, and
A.
Couairon
, “
Focal dynamics of multiple filaments: Microscopic imaging and reconstruction
,”
Phys. Rev. A
82
,
013805
(
2010
).
48.
P.
Skrodzki
,
M.
Burger
,
L.
Finney
,
F.
Poineau
,
S.
Balasekaran
,
J.
Nees
,
K.
Czerwinski
, and
I.
Jovanovic
, “
Ultrafast laser filament-induced fluorescence spectroscopy of uranyl fluoride
,”
Sci. Rep.
8
,
11629
(
2018
).
49.
H.
Hou
,
B.
Yang
,
X.
Mao
,
V.
Zorba
,
P.
Ran
, and
R. E.
Russo
, “
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
,”
Opt. Exp.
26
,
13425
(
2018
).
50.
S. S.
Harilal
,
R. W.
Coons
,
P.
Hough
, and
A.
Hassanein
, “
Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas
,”
Appl. Phys. Lett.
95
,
221501
(
2009
).
You do not currently have access to this content.