A stationary model is proposed for calculating the tunneling current in a vacuum resonant-tunneling triode and tetrode with control grids. The model is based on the solution of the stationary Schrödinger equation by the method of transfer matrices with the calculation of the potential energy profile in a structure with several electrodes by the method of multiple images. The model provides for the inclusion of one or two grids in the structure, particularly of those under the same voltage. For such a structure with a double quantum well, resonant tunneling is obtained and the possibility of the existence of current densities up to 1013 A/m2 is shown. The structures can be used as high-current sources or as elements of oscillator circuits.

1.
C.
Bower
,
D.
Shalóm
,
W.
Zhu
,
D.
López
,
G. P.
Kochanski
,
P. L.
Gammel
, and
S.
Jin
, “
A micromachined vacuum triode using a carbon nanotube cold cathode
,”
IEEE Trans. Electron Devices
49
(
8
),
1478
(
2002
).
2.
R.
Riccitelli
,
F.
Brunetti
,
C.
Paoloni
,
G.
Ulisse
,
A.
Di Carlo
, and
V.
Krozer
, “
Field emission vacuum triode: THz waveguide solutions for the transmission lines
,” in
2008 IEEE International Vacuum Electronics Conference
(IEEE,
2008
), pp.
382
383
.
3.
N. S.
Xua
and
S.
Ejaz Huqb
, “
Novel cold cathode materials and applications
,”
Mater. Sci. Eng. R
48
,
47
189
(
2005
).
4.
O.
Pinaud
, “
Transient simulations of a resonant tunneling diode
,”
J. Appl. Phys.
92
(
4
),
1987
(
2002
).
5.
A. A.
Burtsev
,
Y. A.
Grigor’ev
,
A. V.
Danilushkin
, and
K. V.
Shumikhin
, “
Features of the development of electron-optical systems for pulsed terahertz traveling-wave tubes (review)
,”
Tech. Phys.
63
(
3
),
452
(
2018
).
6.
G. N.
Fursey
,
Field Emission in Vacuum Micro-Electronics
(
Kluwer Academic Plenum Publishers, Springer
,
NY
,
2005
).
7.
L. N.
Dobretsov
and
M. V.
Gomoyunova
, in
Emission Electronics
, edited by
Y.
Freundlich
, and
T.
Korn
(
Israel Program for Scientific Translations
,
Jerusalem
,
1971
) (in Russian).
8.
N.
Egorov
and
E.
Sheshin
,
Field Emission Electronics
(
Springer Series in Advanced Microelectronics, Springer Nature
,
2017
), vol.
60
.
9.
E. D.
Eidelman
and
A. V.
Arkhipov
, “
Field emission from carbon nanostructures: Models and experiment
,”
Phys. Usp.
63
,
648
667
(
2020
).
10.
A. N.
Obraztsov
,
I. Yu
.
Pavlovsky
, and
A. P.
Volkov
, “
Field electron emission in graphite-like films
,”
Tech. Phys.
46
,
1437
(
2001
).
11.
A. F.
Bobkov
,
E. V.
Davydov
,
S. V.
Zaitsev
,
A. V.
Karpov
,
M. A.
Kozodaev
,
I. N.
Nikolaeva
,
M. O.
Popov
,
E. N.
Skorokhodov
,
A. L.
Suvorov
, and
Yu. N.
Cheblukov
, “
Some aspects of the use of carbon materials in field electronic emission cathodes
,”
J. Vac. Sci. Technol. B
19
(
1
),
32
(
2001
).
12.
G. N.
Fursey
,
V. I.
Petrik
, and
D. V.
Novikov
, “
Low-threshold field emission from carbon nanoclusters obtained by the method of cold destruction of graphite
,”
Tech. Phys.
54
(
7
),
1048
(
2009
).
13.
G. N.
Fursei
,
M. A.
Polyakov
,
A. A.
Kantonistov
, and
V. B.
Bozhevol’nov
, “
Field and explosive emissions from graphene-like structures
,”
Tech. Phys.
58
(
6
),
845
(
2013
).
14.
K. F.
Brennan
and
C. J.
Summers
, “
Theory of resonant tunneling in a variably spaced multiquantum well structure - An airy function-approach
,”
J. Appl. Phys.
61
,
614
(
1987
).
15.
H.
Matsui
, “Lorentzian path integral for quantum tunneling and WKB approximation for wave-function,” arXiv:2102.09767 [gr-qc] (2021).
16.
R. G.
Forbes
and
J. P.
Xanthakis
, “
Field penetration into amorphous-carbon films: Consequences for field-induced electron emission
,”
Surf. Interface Anal.
39
,
139
(
2007
).
17.
R. G.
Forbes
, “
Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: Hypotheses about emission mechanism
,”
Solid-State Electron.
45
(
6
),
779
(
2001
).
18.
M. V.
Davidovich
,
R. K.
Yafarov
, and
D. M.
Doronin
, “
Electron tunneling in the presence of dielectric film on the cathode
,” in
2010 20st International Crimean Conference “Microwave & Telecommunication Technology
,
Sevastopol
,
13–17 Sep
(
IEEE
,
2010
), p.
733
.
19.
M. V.
Davidovich
and
N. A.
Bushuev
, “
Field emission in diode and triode vacuum nanostructures
,” in
2014 Tenth Intern. Vacuum Electron Sources Conference and Second International Conference on Emission Electronics Saint-Petersburg
(
Saint Petersburg State University, IEEE
,
2014
), pp.
58
59
.
20.
M. V.
Davidovich
,
N. A.
Bushuev
, and
R. K.
Yafarov
, “
Tunnel current in the presence of nanosized film at the cathode
,” in 2014 Tenth International Vacuum Electron Sources Conference and Second International Conference on Emission Electronics, Saint-Petersburg (
Saint-Petersburg State University, IEEE
,
2014
), pp.
67
68
.
21.
M. V.
Davidovich
,
N. A.
Bushuev
, and
R. K.
Yafarov
, “
Field emission structure with high current ribbon beam and the rotation of trajectories
,” in
2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE)
(
IEEE
,
2016
), pp.
36
39
, Vol. 1.
22.
M. V.
Davidovich
and
R. K.
Yafarov
, “
Pulse and static field emission VAC of carbon nanoclaster structures: Experiment and its interpretation
,”
Tech. Phys.
64
(
8
),
1210
(
2019
).
23.
M. V.
Davidovich
and
R. K.
Yafarov
, “
Field-emission staggered structure based on diamond–graphite clusters
,”
Tech. Phys.
63
(
2
),
274
(
2018
).
24.
E. A.
Nelin
, “
Impedance model for quantum-mechanical barrier problems
,”
Phys. Usp.
50
(
3
),
293
299
(
2007
).
25.
Z. Z.
Alisultanov
, “
Calculation of electron spectra and some problems in the thermodynamics of graphene layers
,”
J. Exp. Theor. Phys.
122
(
2
),
341
(
2016
).
26.
F. G.
Bass
,
A. A.
Bulgakov
, and
A. P.
Tetervov
,
High-Frequency Properties of Semiconductors with Superlattices
(
Nova Science
,
New York
,
1997
).
27.
O.
Pujol
and
J. P.
Perez
, “
A synthetic approach to the transfer matrix method in classical and quantum physics
,”
Eur. J. Phys.
28
,
679
91
(
2007
).
28.
O.
Pujol
,
R.
Carles
, and
J.-P.
Perez
, “
Quantum propagation and confinement in 1D systems using the transfer-matrix method
,”
Eur. J. Phys.
35
(
1–26
),
035025
(
2014
).
29.
L. L.
Sánchez-Sotoa
,
J. J.
Monzóna
,
A. G.
Barriusoa
, and
J. F.
Cariñena
, “
The transfer matrix: A geometrical perspective
,”
Phys. Rep.
513
,
191
227
(
2012
).
30.
J. G.
Simmons
, “
Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
,”
J. Appl. Phys.
34
(
6
),
1793
(
1963
).
31.
I.
Tamm
and
D.
Blokhintsev
, “
The work function of electrons from metals
,”
Zh. Eksp. Teor. Fiz.
3
(
2
),
77
100
(
1933
).
32.
M. B.
Partenskii
, “
Self-consistent electron theory of a metallic surface
,”
Sov. Phys. Usp.
22
,
330
(
1979
).
33.
C.
Berthod
and
T.
Giamarchi
, “
Tunneling conductance and local density of states in tight-binding junctions
,”
Phys. Rev. B
84
,
155414
(
2011
).
34.
T. N.
Todorov
,
G. A. D.
Briggs
, and
A. P.
Sutton
, “
Elastic quantum transport through small structures
,”
J. Phys.: Condens. Matter
5
,
2389
(
1993
).
35.
W.
Wang
and
Z.
Lia
, “
Potential barrier of graphene edges
,”
J. Appl. Phys.
109
(
11
),
114308
(
2011
).
36.
A. P.
Prudnikov
,
Y. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series. Elementary Functions
(
London Gordon and Breach Science Publisher
,
1998
).
37.
N. A.
Bushuev
, “
Tunnel current and I–V characteristics of vacuum extremely-high-frequency microelectronic structures
,”
J. Commun. Technol. Electron.
60
,
193
(
2015
).
38.
K. L.
Jensen
,
D.
Finkenstadt
,
D. A.
Shiffler
,
A.
Shabaev
,
S. G.
Lambrakos
,
N. A.
Moody
, and
J. J.
Petillo
, “
Analytical models of transmission probabilities for electron sources
,”
J. Appl. Phys.
123
,
065301
(
2018
).
39.
P.
Silvester
, “
TEM wave properties of microstrip transmission line
,”
Proc. Inst. Electr. Eng.
115
(
1
),
43
(
1968
).
40.
R.
Tsu
and
L.
Esaki
, “
Tunneling in a finite superlattice
,”
Appl. Phys. Lett.
22
,
562
(
1973
).
You do not currently have access to this content.