High-conductivity undoped GaN/AlN 2D hole gases (2DHGs), the p-type dual of the AlGaN/GaN 2D electron gases (2DEGs), have offered valuable insights into hole transport in GaN and enabled the first GaN GHz RF p-channel FETs. They are an important step toward high-speed and high-power complementary electronics with wide-bandgap semiconductors. These technologically and scientifically relevant 2D hole gases are perceived to be not as robust as the 2DEGs because structurally similar heterostructures exhibit wide variations of the hole density over Δps>7×1013 cm2, and low mobilities. In this work, we uncover that the variations are tied to undesired dopant impurities such as silicon and oxygen floating up from the nucleation interface. By introducing impurity blocking layers (IBLs) in the AlN buffer layer, we eliminate the variability in 2D hole gas densities and transport properties, resulting in a much tighter control over the 2DHG density variations to Δps1×1013 cm2 across growths, and a 3× boost in the Hall mobilities. These changes result in a 2–3× increase in hole conductivity when compared to GaN/AlN structures without IBLs.

1.
S.
Nakamura
, “
Nobel lecture: Background story of the invention of efficient blue InGaN light emitting diodes
,”
Rev. Mod. Phys.
87
,
1139
1151
(
2015
).
2.
P.
Kozodoy
,
H.
Xing
,
S. P.
DenBaars
,
U. K.
Mishra
,
A.
Saxler
,
R.
Perrin
,
S.
Elhamri
, and
W. C.
Mitchel
, “
Heavy doping effects in Mg-doped GaN
,”
J. Appl. Phys.
87
,
1832
1835
(
2000
).
3.
S.
Poncé
,
D.
Jena
, and
F.
Giustino
, “
Route to high hole mobility in GaN via reversal of crystal-field splitting
,”
Phys. Rev. Lett.
123
,
096602
(
2019
).
4.
R.
Chaudhuri
,
S. J.
Bader
,
Z.
Chen
,
D. A.
Muller
,
H.
Xing
, and
D.
Jena
, “
A polarization-induced 2D hole gas in undoped gallium nitride quantum wells
,”
Science
365
,
1454
1457
(
2019
).
5.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
L.
Wittmer
,
M.
Stutzmann
,
W.
Rieger
, and
J.
Hilsenbeck
, “
Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures
,”
J. Appl. Phys
85
,
3222
3233
(
1999
).
6.
G.
Li
,
R.
Wang
,
B.
Song
,
J.
Verma
,
Y.
Cao
,
S.
Ganguly
,
A.
Verma
,
J.
Guo
,
H. G.
Xing
, and
D.
Jena
, “
Polarization-induced GaN-on-insulator E/D mode heterostructure FETs
,”
IEEE Electron Device Lett.
34
,
852
854
(
2013
).
7.
K.
Nomoto
,
R.
Chaudhuri
,
S. J.
Bader
,
L.
Li
,
A.
Hickman
,
S.
Huang
,
H.
Lee
,
T.
Maeda
,
H. W.
Then
,
M.
Radosavljevic
,
P.
Fischer
,
A.
Molnar
,
J. C.
Hwang
,
H. G.
Xing
, and
D.
Jena
, “GaN/AlN p-channel HFETs with Imax>420 mA/mm and 20 GHz fT/ fMAX,” in
2020 IEEE International Electron Devices Meeting (IEDM), 2020
, (IEEE, 2020), 8.3.1–8.3.1.
8.
S. J.
Bader
,
H.
Lee
,
R.
Chaudhuri
,
S.
Huang
,
A.
Hickman
,
A.
Molnar
,
H. G.
Xing
,
D.
Jena
,
H. W.
Then
,
N.
Chowdhury
, and
T.
Palacios
, “
Prospects for wide bandgap and ultrawide bandgap CMOS devices
,”
IEEE Trans. Electron. Devices
42
,
1
11
(
2020
).
9.
G.
Koblmueller
,
R.
Averbeck
,
L.
Geelhaar
,
H.
Riechert
,
W.
Hösler
, and
P.
Pongratz
, “
Growth diagram and morphologies of AlN thin films grown by molecular beam epitaxy
,”
J. Appl. Phys.
93
,
9591
9596
(
2003
).
10.
B.
Heying
,
R.
Averbeck
,
L. F.
Chen
,
E.
Haus
,
H.
Riechert
, and
J. S.
Speck
, “
Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy
,”
J. Appl. Phys.
88
,
1855
1860
(
2000
).
11.
W. E.
Hoke
,
A.
Torabi
,
J. J.
Mosca
, and
T. D.
Kennedy
, “
Thermodynamic analysis of cation incorporation during molecular beam epitaxy of nitride films using metal-rich growth condition
,”
J. Vac. Sci. Technol. B
25
,
978
(
2014
).
12.
W. E.
Hoke
,
A.
Torabi
,
J. J.
Mosca
,
R. B.
Hallock
, and
T. D.
Kennedy
, “
Rapid silicon outdiffusion from SiC substrates during molecular-beam epitaxial growth of AlGaN/GaN/AlN transistor structures
,”
J. Appl. Phys.
98
,
1
5
(
2005
).
13.
C.
Poblenz
,
P.
Waltereit
,
S.
Rajan
,
U. K.
Mishra
,
J. S.
Speck
,
P.
Chin
,
I.
Smorchkova
, and
B.
Heying
, “
Effect of AlN nucleation layer growth conditions on buffer leakage in AlGaNGaN high electron mobility transistors grown by molecular beam epitaxy (MBE)
,”
J. Vac. Sci. Technol. B
23
,
1562
(
2005
).
14.
E.
Iliopoulos
and
T. D.
Moustakas
, “
Growth kinetics of AlGaN films by plasma-assisted molecular-beam epitaxy
,”
Appl. Phys. Lett.
295
,
295
(
2011
).
15.
T.
Böttcher
,
S.
Einfeldt
,
V.
Kirchner
,
S.
Figge
,
H.
Heinke
, and
D.
Hommel
, “
Incorporation of indium during molecular beam epitaxy of InGaN incorporation of indium during molecular beam epitaxy of InGaN
,”
Appl. Phys. Lett.
3232
,
20
23
(
2012
).
16.
K.
Lee
, “Improving efficiency of visible and deep UV LEDs and lasers,” Ph.D. thesis (School Cornell University, Ithaca, 2020).
17.
S. J.
Bader
,
R.
Chaudhuri
,
M. F.
Schubert
,
H. W.
Then
,
H. G.
Xing
, and
D.
Jena
, “
Wurtzite phonons and the mobility of a GaN/AlN 2D hole gas
,”
Appl. Phys. Lett.
114
,
253501
(
2019
).
18.
J. H.
Davies
,
The Physics of Low-Dimensional Semiconductors
(
Cambridge University Press
,
1997
).
19.
J. S.
Im
,
A.
Moritz
,
F.
Steuber
,
V.
Härle
,
F.
Scholz
, and
A.
Hangleiter
, “
Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN
,”
Appl. Phys. Lett.
70
,
631
633
(
1997
).
20.
A. A.
Yamaguchi
,
Y.
Mochizuki
,
H.
Sunakawa
, and
A.
Usui
, “
Determination of valence band splitting parameters in GaN
,”
J. Appl. Phys.
83
,
4542
(
1998
).
21.
T.
Ohtoshi
,
A.
Niwa
, and
T.
Kuroda
, “
Dependence of optical gain on crystal orientation in wurtzite-GaN strained quantum-well lasers
,”
J. Appl. Phys.
82
,
1518
(
1997
).
22.
J. W.
Orton
,
The Story of Semiconductors
(
Oxford University Press
,
2008
).
23.
H.
Hahn
,
B.
Reuters
,
A.
Pooth
,
B.
Hollander
,
M.
Heuken
,
H.
Kalisch
, and
A.
Vescan
, “
P-channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers
,”
IEEE. Trans. Electron. Devices.
60
,
3005
3011
(
2013
).
24.
K.
Zhang
,
M.
Sumiya
,
M.
Liao
,
Y.
Koide
, and
L.
Sang
, “
P-channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas
,”
Sci. Rep.
6
,
23683
(
2016
).
25.
A.
Nakajima
,
Y.
Sumida
,
M. H.
Dhyani
,
H.
Kawai
, and
E. M. S.
Narayanan
, “
High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface
,”
Appl. Phys. Express
3
,
121004
(
2010
).
26.
M.
Qi
,
G.
Li
,
S.
Ganguly
,
P.
Zhao
,
X.
Yan
,
J.
Verma
,
B.
Song
,
M.
Zhu
,
K.
Nomoto
,
H.
Xing
, and
D.
Jena
, “
Strained GaN quantum-well FETs on single crystal bulk AlN substrates
,”
Appl. Phys. Lett.
110
,
6
10
(
2017
).
27.
G.
Li
,
Y.
Cao
,
H. G.
Xing
, and
D.
Jena
, “
High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers
,”
Appl. Phys. Lett.
97
,
222110
(
2010
).
28.
A. L.
Hickman
,
R.
Chaudhuri
,
S. J.
Bader
,
K.
Nomoto
,
L.
Li
,
J.
Hwang
,
H. G.
Xing
, and
D.
Jena
, “
Next generation electronics on the ultrawide-bandgap aluminum nitride platform
,”
Semicond. Sci. Technol.
36
,
044001
(
2021
).
29.
S. J.
Bader
,
R.
Chaudhuri
,
A.
Hickman
,
K.
Nomoto
,
S.
Bharadwaj
,
H. W.
Then
,
H. G.
Xing
, and
D.
Jena
, “GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current,” in
2019 IEEE International Electron Devices Meeting (IEDM), 2019
(IEEE, 2019), pp. 4.5.1–4.5.4.
30.
A.
Hickman
,
R.
Chaudhuri
,
S. J.
Bader
,
K.
Nomoto
,
K.
Lee
,
H. G.
Xing
, and
D.
Jena
, “
High breakdown voltage in RF AlN/GaN/AlN quantum well HEMTs
,”
IEEE Electron Device Lett.
40
,
1293
1296
(
2019
).
31.
A.
Hickman
,
R.
Chaudhuri
,
L.
Li
,
K.
Nomoto
,
S. J.
Bader
,
J. C.
Hwang
,
H. G.
Xing
, and
D.
Jena
, “
First RF power operation of AlN/GaN/AlN HEMTs with >3 A/mm and 3 W/mm at 10 GHz
,”
IEEE J. Electron Devices Soc.
9
,
121
124
(
2020
).
32.
K.
Lee
,
Y.
Cho
,
L. J.
Schowalter
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
, “
Surface control and MBE growth diagram for homoepitaxy on single-crystal AlN substrates
,”
Appl. Phys. Lett.
116
,
010813
(
2020
).
33.
Y.
Cho
,
C. S.
Chang
,
K.
Lee
,
M.
Gong
,
K.
Nomoto
,
M.
Toita
,
L. J.
Schowalter
,
D. A.
Muller
,
D.
Jena
, and
H. G.
Xing
, “
Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning
,”
Appl. Phys. Lett.
116
,
172106
(
2020
).

Supplementary Material

You do not currently have access to this content.