Vanadium dioxide (VO2) has wide application prospects in the electronics industry because of its rapid, reversible, and multi-stimulus response phase transition behavior. The development of flexible VO2 films and devices can further promote the development of flexible electronic materials and may play an important role in the next generation of wearable electronics. Here, we directly fabricated flexible VO2 films on mica via a pulsed-laser deposition system. By selection and optimization of the deposited condition, a high-quality flexible VO2 film with excellent metal to insulator (MI) transition properties of about a 3 order resistance variation in magnitude is successfully prepared. The growth competitions with different phases and different epitaxial orientations in the selection of deposited conditions verify the van der Waals (vdW) epitaxial growth mechanism of VO2 films on mica substrates. The invariable sheet resistance of VO2 films under different bending radii and bending cycles indicate their excellent mechanical flexibility and bending stability. Moreover, benefiting from the vdW epitaxy, a millimeter-scale, totally free-standing and transferable VO2 film is further obtained by a simple wet method and it is expected to be integrated into conventional silicon electronics and other systems. The high-quality, flexible, and peelable VO2 film prepared in our work lays a solid foundation for the application of VO2 films in wearable and integrated electronics.

1.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
,
Annu. Rev. Mater. Sci.
41
,
337
367
(
2011
).
2.
N. B.
Aetukuri
,
A. X.
Gray
,
M.
Drouard
,
M.
Cossale
,
L.
Gao
,
A. H.
Reid
,
R.
Kukreja
,
H.
Ohldag
,
C. A.
Jenkins
,
E.
Arenholz
 et al,
Nat. Phys.
9
,
661
666
(
2013
).
3.
C.
Wu
,
F.
Feng
, and
Y.
Xie
,
Chem. Soc. Rev.
42
,
5157
5183
(
2013
).
4.
F. J.
Morin
,
Phys. Rev. Lett.
3
,
34
36
(
1959
).
5.
W.-K.
Hong
,
S.
Cha
,
J. I.
Sohn
, and
J. M.
Kim
,
J. Nanomater.
2015
,
1
15
(
2015
).
6.
Q.
Hao
,
W.
Li
,
H.
Xu
,
J.
Wang
,
Y.
Yin
,
H.
Wang
,
L.
Ma
,
F.
Ma
,
X.
Jiang
,
O. G.
Schmidt
 et al,
Adv. Mater.
30
,
1705421
(
2018
).
7.
T.
Chang
,
X.
Cao
,
N.
Li
,
S.
Long
,
X.
Gao
,
L. R.
Dedon
,
G.
Sun
,
H.
Luo
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
9
,
26029
26037
(
2017
).
8.
Z.
Li
,
Z.
Hu
,
J.
Peng
,
C.
Wu
,
Y.
Yang
,
F.
Feng
,
P.
Gao
,
J.
Yang
, and
Y.
Xie
,
Adv. Funct. Mater.
24
,
1821
1830
(
2014
).
9.
J.
Lu
,
H.
Liu
,
S.
Deng
,
M.
Zheng
,
Y.
Wang
,
J. A.
van Kan
,
S. H.
Tang
,
X.
Zhang
,
C. H.
Sow
, and
S. G.
Mhaisalkar
,
Nanoscale
6
,
7619
7627
(
2014
).
10.
H.
Ma
,
J.
Hou
,
X.
Wang
,
J.
Zhang
,
Z.
Yuan
,
L.
Xiao
,
Y.
Wei
,
S.
Fan
,
K.
Jiang
, and
K.
Liu
,
Nano Lett.
17
,
421
428
(
2017
).
11.
K. K.
Dey
,
D.
Bhatnagar
,
A. K.
Srivastava
,
M.
Wan
,
S.
Singh
,
R. R.
Yadav
,
B. C.
Yadavc
, and
M.
Deepad
,
Nanoscale
7
,
6159
6172
(
2015
).
12.
Y.
Ke
,
S.
Wang
,
G.
Liu
,
M.
Li
,
T. J.
White
, and
Y.
Long
,
Small
14
,
1802025
(
2018
).
13.
X.
Wang
,
X.
Lu
,
B.
Liu
,
D.
Chen
,
Y.
Tong
, and
G.
Shen
,
Adv. Mater.
26
,
4763
4782
(
2014
).
14.
D.
McCoul
,
W.
Hu
,
M.
Gao
,
V.
Mehta
, and
Q.
Pei
,
Adv. Electron. Mater.
2
,
1500407
(
2016
).
15.
T. Q.
Trung
and
N.-E.
Lee
,
J. Mater. Chem. C
5
,
2202
2222
(
2017
).
16.
L. L.
Fan
,
S.
Chen
,
Z. L.
Luo
,
Q. H.
Liu
,
Y. F.
Wu
,
L.
Song
,
D. X.
Ji
,
P.
Wang
,
W. S.
Chu
,
C.
Gao
 et al,
Nano Lett.
14
,
4036
4043
(
2014
).
17.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S. P.
Parkin
,
Science
339
,
1402
1405
(
2013
).
18.
D.
Lee
,
J.
Lee
,
K.
Song
,
F.
Xue
,
S.-Y.
Choi
,
Y.
Ma
,
J.
Podkaminer
,
D.
Liu
,
S.-C.
Liu
,
B.
Chung
 et al,
Nano Lett.
17
,
5614
5619
(
2017
).
19.
D.
Guo
,
C.
Ling
,
C.
Wang
,
D.
Wang
,
J.
Li
,
Z.
Zhao
,
Z.
Wang
,
Y.
Zhao
,
J.
Zhang
, and
H.
Jin
,
ACS Appl. Mater. Interfaces
10
,
28627
28634
(
2018
).
20.
N.
Shen
,
S.
Chen
,
W.
Wang
,
R.
Shi
,
P.
Chen
,
D.
Kong
,
Y.
Liang
,
A.
Amini
,
J.
Wang
, and
C.
Cheng
,
J. Mater. Chem. A
7
,
4516
4524
(
2019
).
21.
H.
Kim
,
Y.
Kim
,
K. S.
Kim
,
H. Y.
Jeong
,
A-R.
Jang
,
S. H.
Han
,
D. H.
Yoon
,
K. S.
Suh
,
H. S.
Shin
,
T. Y.
Kim
, and
W. S.
Yang
ACS Nano
7
,
5769
5776
(
2013
).
22.
X.
Li
,
Z.
Yin
,
X.
Zhang
,
Y.
Wang
,
D.
Wang
,
M.
Gao
,
J.
Meng
,
J.
Wu
, and
J.
You
,
Adv. Mater. Technol.
4
,
1800695
(
2019
).
23.
Y.
Choi
,
Y.
Jung
, and
H.
Kim
,
Thin Solid Films
615
,
437
445
(
2016
).
24.
S.
Loquai
,
B.
Baloukas
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
Sol. Energy Mater Sol. Cells
155
,
60
69
(
2016
).
25.
D.
Zhang
,
M.
Zhu
,
Y.
Liu
,
K.
Yang
,
G.
Liang
,
Z.
Zheng
,
X.
Cai
, and
P.
Fan
,
J. Alloys Compd.
659
,
198
202
(
2016
).
26.
H.
Koo
,
L.
Xu
,
K.-E.
Ko
,
S.
Ahn
,
S.-H.
Chang
, and
C.
Park
,
J. Mater. Eng. Perform.
22
,
3967
3973
(
2013
).
27.
G.
Sun
,
X.
Cao
,
X.
Gao
,
S.
Long
,
M.
Liang
, and
P.
Jin
,
Appl. Phys. Lett.
109
,
143903
(
2016
).
28.
S. G.
Barlow
and
D. A. C.
Manning
,
Br. Ceram. Trans.
98
,
122
126
(
1999
).
29.
D. M.
Hepburn
,
I. J.
Kemp
, and
A. J.
Shields
,
IEEE Electr. Insul. Mag.
16
,
19
24
(
2000
).
30.
Y.
He
,
H.
Dong
,
Q.
Meng
,
L.
Jiang
,
W.
Shao
,
L.
He
, and
W.
Hu
,
Adv. Mater.
23
,
5502
5507
(
2011
).
31.
H.-J.
Liu
,
C.-K.
Wang
,
D.
Su
,
T.
Amrillah
,
Y.-H.
Hsieh
,
K.-H.
Wu
,
Y.-C.
Chen
,
J.-Y.
Juang
,
L. M.
Eng
,
S.-U.
Jen
 et al,
ACS Appl. Mater. Interfaces
9
,
7297
7304
(
2017
).
32.
C.-H.
Ma
,
J.-C.
Lin
,
H.-J.
Liu
,
T. H.
Do
,
Y.-M.
Zhu
,
T. D.
Ha
,
Q.
Zhan
,
J.-Y.
Juang
,
Q.
He
,
E.
Arenholz
 et al,
Appl. Phys. Lett.
108
,
253104
(
2016
).
33.
J.
Liu
,
Y.
Feng
,
R.
Tang
,
R.
Zhao
,
J.
Gao
,
D.
Shi
, and
H.
Yang
,
Adv. Electron. Mater.
4
,
1700522
(
2018
).
34.
Y.
Bitla
,
C.
Chen
,
H.-C.
Lee
,
T. H.
Do
,
C.-H.
Ma
,
L. V.
Qui
,
C.-W.
Huang
,
W.-W.
Wu
,
L.
Chang
,
P.-W.
Chiu
 et al,
ACS Appl. Mater. Interfaces
8
,
32401
32407
(
2016
).
35.
Y.
Zhang
,
Y.
Cao
,
H.
Hu
,
X.
Wang
,
P.
Li
,
Y.
Yang
,
J.
Zheng
,
C.
Zhang
,
Z.
Song
,
A.
Li
 et al,
ACS Appl. Mater. Interfaces
11
,
8284
8290
(
2019
).
36.
C.-I.
Li
,
J.-C.
Lin
,
H.-J.
Liu
,
M.-W.
Chu
,
H.-W.
Chen
,
C.-H.
Ma
,
C.-Y.
Tsai
,
H.-W.
Huang
,
H.-J.
Lin
,
H.-L.
Liu
 et al,
Chem. Mater.
28
,
3914
3919
(
2016
).
37.
Y.
Wang
,
J.
Zhu
,
W.
Yang
,
T.
Wen
,
M.
Pravica
,
Z.
Liu
,
M.
Hou
,
Y.
Fei
,
L.
Kang
,
Z.
Lin
 et al,
Nat. Commun.
7
,
12214
(
2016
).
38.
Y.
Bitla
and
Y.-H.
Chu
,
FlatChem
3
,
26
42
(
2017
).
39.
Q.
Yu
,
W.
Li
,
J.
Liang
,
Z.
Duan
,
Z.
Hu
,
J.
Liu
,
H.
Chen
, and
J.
Chu
,
J. Phys. D: Appl. Phys.
46
,
055310
(
2013
).
40.
P.
Zhang
,
K.
Jiang
,
Q.
Deng
,
Q.
You
,
J.
Zhang
,
J.
Wu
,
Z.
Hu
, and
J.
Chu
,
J. Mater. Chem. C
3
,
5033
5040
(
2015
).
41.
S.
Lee
,
T. L.
Meyer
,
S.
Park
,
T.
Egami
, and
H. N.
Lee
,
Appl. Phys. Lett.
105
,
223515
(
2014
).
42.
Y.-K.
Dou
,
J.-B.
Li
,
M.-S.
Cao
,
D.-Z.
Su
,
F.
Rehman
,
J.-S.
Zhang
, and
H.-B.
Jin
,
Appl. Surf. Sci.
345
,
232
237
(
2015
).
43.
C.
Chen
,
Y.
Zhao
,
X.
Pan
,
V.
Kuryatkov
,
A.
Bernussi
,
M.
Holtz
, and
Z.
Fan
,
J. Appl. Phys.
110
,
023707
(
2011
).
44.
L. L.
Fan
,
S.
Chen
,
Y. F.
Wu
,
F. H.
Chen
,
W. S.
Chu
,
X.
Chen
,
C. W.
Zou
, and
Z. Y.
Wu
,
Appl. Phys. Lett.
103
,
131914
(
2013
).
45.
S.
Chen
,
X.
Wang
,
L.
Fan
,
G.
Liao
,
Y.
Chen
,
W.
Chu
,
L.
Song
,
J.
Jiang
, and
C.
Zou
,
Adv. Funct. Mater.
26
,
3532
3541
(
2016
).
46.
S.
Steinberg
,
W.
Ducker
,
G.
Vigil
,
C.
Hyukjin
,
C.
Frank
, and
M. Z.
Tseng
,
Science
260
,
656
659
(
1993
).
47.
A.
Koma
,
J. Cryst. Growth
201–202
,
236
241
(
1999
).
48.
M. I. B.
Utama
,
M.
de la Mata
,
C.
Magen
,
J.
Arbiol
, and
Q. H.
Xiong
,
Adv. Funct. Mater.
23
,
1636
1646
(
2013
).
49.
E.
Strelcov
,
Y.
Lilach
, and
A.
Kolmakov
,
Nano Lett.
9
,
2322
2326
(
2009
).
50.
J. I.
Sohn
,
H. J.
Joo
,
A. E.
Porter
,
C.-J.
Choi
,
K.
Kim
,
D. J.
Kang
, and
M. E.
Welland
,
Nano Lett.
7
,
1570
1574
(
2007
).
51.
Z.
Suo
,
E. Y.
Ma
,
H.
Gleskova
, and
S.
Wagner
,
Appl. Phys. Lett.
74
,
1177
1179
(
1999
).

Supplementary Material

You do not currently have access to this content.