Mechanical resonators have a long tradition. We concentrate on new results with a sensor for liquid analytes, the phononic crystal (PnC) sensor. Here, the liquid analyte becomes the integral part of a phononic crystal. The liquid-filled cavity acts as a defect in an otherwise regular structure. The sensor probes the entire liquid volume. The primary sensor input value is the speed of sound in the liquid; the primary output parameter is a shift in the resonance frequency. We theoretically analyze 1D- and 2D-PnC sensors. An optimal relation of frequency shift and bandwidth of the resonance is the key to an enhanced sensitivity of the sensor to liquid analyte properties. We introduce a new 2D PnC sensor design concept: The sensor-specific feature is an analyte-filled point defect. This defect becomes the analyte-filled capillary in the real sensor. This is the step toward the integration of PnC and microfluidic components. Electromechanical transducers excite and detect longitudinal acoustic waves along the channel, not at the front ends of the capillary. The sensor-specific task of the 2D-PnC is the conversion of this longitudinal wave into the axisymmetric mode in the liquid-filled cavity. In contrast to other modes, this mode avoids shear displacement at the solid–liquid interface and thereby absorption of acoustic energy due to liquid shear viscosity. Experiments prove the correctness of our approach.

1.
G.
Sauerbrey
, “
Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung
,”
Z. Phys.
155
,
206
222
(
1959
).
2.
K. K.
Kanazawa
and
J. G.
Gordon
, “
Frequency of a quartz microbalance in contact with liquid
,”
Anal. Chem.
57
,
1770
1771
(
1985
).
3.
K. L.
Ekinci
,
X. M. H.
Huang
, and
M. L.
Roukes
, “
Ultrasensitive nanoelectromechanical mass detection
,”
Appl. Phys. Lett.
84
,
4469
4471
(
2004
).
4.
J.
Chaste
,
A.
Eichler
,
J.
Moser
,
G.
Ceballos
,
R.
Rurali
, and
A.
Bachtold
, “
A nanomechanical mass sensor with yoctogram resolution
,”
Nat. Nanotechnol.
7
,
301
304
(
2012
).
5.
A. K.
Naik
,
M. S.
Hanay
,
W. K.
Hiebert
,
X. L.
Feng
, and
M. L.
Roukes
, “
Towards single-molecule nanomechanial mass spectrometry
,”
Nat. Nanotechnol.
4
,
445
450
(
2009
).
6.
M. S.
Hanay
,
S.
Kelber
,
A. K.
Naik
,
D.
Chi
,
S.
Hentz
,
E. C.
Bullard
,
E.
Colinet
,
L.
Duraffourg
, and
M. L.
Roukes
, “
Single-protein nanomechanical mass spectrometry in real time
,”
Nat. Nanotechnol.
7
,
602
608
(
2012
).
7.
V.
Ruiz-Díez
,
J.
Hernando-García
,
T.
Manzaneque
,
M.
Kucera
,
U.
Schmid
, and
J.
Luis Sánchez-Rojas
, “
Viscous and acoustic losses in length-extensional microplate resonators in liquid media
,”
Appl. Phys. Lett.
106
,
083510
(
2015
).
8.
M.
Rodahl
,
F.
Höök
,
A.
Krozer
,
P.
Brzezinski
, and
B.
Kasemo
, “
Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments
,”
Rev. Sci. Instrum.
66
,
3924
3930
(
1995
).
9.
A. C.
da Silva
,
R. A.
da Silva
,
M. J. P. G.
Souza
,
P. M.
Montoya
,
R.
Bentini
,
T.
Augusto
,
R. M.
Torresi
,
L. H.
Catalani
, and
S. I.
Córdoba de Torresi
, “
Electrochemical quartz crystal microbalance with dissipation investigation of fibronectin adsorption dynamics driven by electrical stimulation onto a conducting and partially biodegradable copolymer
,”
Biointerphases
15
,
021003
(
2020
).
10.
D.
Yongabi
,
M.
Khorshid
,
A.
Gennaro
,
S.
Jooken
,
S.
Duwé
,
O.
Deschaume
,
P.
Losada-Pérez
,
P.
Dedecker
,
C.
Bartic
,
M.
Wübbenhorst
, and
P.
Wagner
, “
QCM-D study of time-resolved cell adhesion and detachment: Effect of surface free energy on eukaryotes and prokaryotes
,”
ACS Appl. Mater. Interfaces
12
,
18258
18272
(
2020
).
11.
Z.
Adamczyk
,
M.
Sadowska
, and
P.
Żeliszewska
, “
Applicability of QCM-D for quantitative measurements of nano- and microparticle deposition kinetics: Theoretical modeling and experiments
,”
Anal. Chem.
92
,
5087
5095
(
2020
).
12.
R.
Lucklum
and
J.
Li
, “
Phononic crystals for liquid sensor applications
,”
Meas. Sci. Technol.
20
,
124014
(
2009
).
13.
F.
Lucklum
and
M. J.
Vellekoop
, “
Design and fabrication challenges for millimeter-scale three-dimensional phononic crystals
,”
Crystals
7
,
348
(
2017
).
14.
R.
Lucklum
,
M.
Zubtsov
, and
A.
Oseev
, “
Phoxonic crystals—A new platform for chemical and biochemical sensors
,”
Anal. Bioanal. Chem.
405
,
6497
6509
(
2013
).
15.
S.
Amoudache
,
Y.
Pennec
,
B.
Djafari Rouhani
,
A.
Khater
,
R.
Lucklum
, and
R.
Tigrine
, “
Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoxonic crystal with defects
,”
J. Appl. Phys.
115
,
134503
(
2014
).
16.
N.-N.
Huang
,
Y.-C.
Chung
,
H.-T.
Chiu
,
J.-C.
Hsu
,
Y.-F.
Lin
,
C.-T.
Kuo
,
Y.-W.
Chang
,
C.-Y.
Chen
, and
T.-R.
Lin
, “
Dual photonic–phononic crystal slot nanobeam with gradient cavity for liquid sensing
,”
Crystals
10
,
421
(
2020
).
17.
D.
Johannsmann
, “
Studies of viscoelasticity with QCM
,” in
Piezoelectric Sensors
, edited by
C.
Steinem
and
A.
Janshoff
(
Springer
,
Heidelberg
,
2007
).
18.
R.
Lucklum
,
M.
Ke
, and
M.
Zubtsov
, “
Two-dimensional phononic crystal sensor based on a cavity mode
,”
Sens. Actuators B
171-172
,
271
277
(
2012
).
19.
M.
Zubtsov
,
R.
Lucklum
,
M.
Ke
,
A.
Oseev
,
R.
Grundmann
,
B.
Henning
, and
U.
Hempel
, “
2D phononic crystal sensor with normal incidence of sound
,”
Sens. Actuators A
186
,
118
124
(
2012
).
20.
A.
Oseev
,
M.
Zubtsov
, and
R.
Lucklum
, “
Gasoline properties determination with phononic crystal cavity sensor
,”
Sens. Actuators B
189
,
208
212
(
2013
).
21.
A.
Salman
,
O.
Adem Kaya
, and
A.
Cicek
, “
Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab
,”
Sens. Actuators A
208
,
50
55
(
2014
).
22.
P.
Li
,
F.
Li
,
Y.
Liu
,
F.
Shu
,
J.
Wu
, and
Y.
Wu
, “
Temperature insensitive mass sensing of mode selected phononic crystal cavity
,”
J. Micromech. Microeng.
25
,
125027
(
2015
).
23.
C.
Wang
,
F.
Cai
,
F.
Li
,
L.
Meng
,
J.
Li
,
J.
Wu
,
Y.
Kang
, and
H.
Zheng
, “
A highly sensitive compact liquid sensor based on slotted phononic crystal plates
,”
Lab Chip
16
,
4595
4600
(
2016
).
24.
S.
Villa-Arango
,
D.
Betancur Sánchez
,
R.
Torres
,
P.
Kyriacou
, and
R.
Lucklum
, “
Differential phononic crystal sensor: Towards a temperature compensation mechanism for field applications development
,”
Sensors
17
,
1960
(
2017
).
25.
A.
Oseev
,
R.
Lucklum
,
M.
Zubtsov
,
M.-P.
Schmidt
,
N. V.
Mukhin
, and
S.
Hirsch
, “
SAW-based phononic crystal microfluidic sensor-microscale realization of velocimetry approaches for integrated analytical platform applications
,”
Sensors
17
,
2187
(
2017
).
26.
F.
Lucklum
and
M. J.
Vellekoop
, “
Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice
,”
Appl. Phys. Lett.
113
,
201902
(
2018
).
27.
A.
Oseev
,
N.
Mukhin
,
R.
Lucklum
,
M.
Zubtsov
,
M. P.
Schmidt
,
U.
Steinmann
,
A.
Fomin
,
A.
Kozyrev
, and
S.
Hirsch
, “
Study of liquid resonances in solid-liquid composite periodic structures (phononic crystals) – theoretical investigations and practical application for in-line analysis of conventional petroleum products
,”
Sens. Actuators B
257
,
469
477
(
2018
).
28.
S.
Villa-Arango
,
D.
Betancur
,
R.
Torres
, and
P.
Kyriacou
, “
Use of transient time response as a measure to characterize phononic crystal sensors
,”
Sensors
18
,
3618
(
2018
).
29.
N.
Mukhin
,
M.
Kutia
,
A.
Oseev
,
U.
Steinmann
,
S.
Palis
, and
R.
Lucklum
, “
Narrow band solid-liquid composite arrangements: Alternative solutions for phononic crystal-based liquid sensors
,”
Sensors
19
,
3743
(
2019
).
30.
N.
Mukhin
and
R.
Lucklum
, “
QCM based sensor for detecting volumetric properties of liquids
,”
Current Applied Physics
19
,
679
682
(
2019
).
31.
J. N.
Kirchhof
,
K.
Weinel
,
S.
Heeg
,
V.
Deinhart
,
S.
Kovalchuk
,
K.
Höflich
, and
K. I.
Bolotin
, “
Tunable graphene phononic crystal
,”
Nano Lett.
21
,
2174
2182
(
2021
).
32.
F.
Gao
,
A.
Bermak
,
S.
Benchabane
,
L.
Robert
, and
A.
Khelif
, “
Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection
,”
Microsyst. Nanoeng.
7
,
8
(
2021
).
33.
N.
Aravantinos-Zafiris
,
F.
Lucklum
, and
M. M.
Sigalas
, “
Complete phononic band gaps in the 3D yablonovite structure with spheres
,”
Ultrasonics
110
,
106265
(
2021
).
34.
A.
Gueddida
,
Y.
Pennec
,
V.
Zhang
,
F.
Lucklum
,
M.
Vellekoop
,
N.
Mukhin
,
R.
Lucklum
,
B.
Bonello
, and
B.
Djafari Rouhani
, “
Tubular, phononic crystal sensor
,”
J. Appl. Phys.
(to be published).
35.
R.
Lucklum
,
C.
Behling
,
R. W.
Cernosek
, and
S. J.
Martin
, “
Determination of complex shear modulus with thickness shear mode resonators
,”
J. Phys. D: Appl. Phys.
30
,
346
356
(
1997
).
36.
C.
Behling
,
R.
Lucklum
, and
P.
Hauptmann
, “
The non-gravimetric quartz crystal resonator response and its application for determination of polymer shear modulus
,”
Meas. Sci. Technol.
9
,
1886
1893
(
1998
).
37.
Y.
Pennec
,
J. O.
Vasseur
,
B.
Djafari-Rouhani
,
L.
Dobrzyński
, and
P. A.
Deymier
, “
Two-dimensional phononic crystals: Examples and applications
,”
Surf. Sci. Rep.
65
,
229
291
(
2010
).
38.
Y.
Pennec
,
Y.
Jin
, and
B.
Djafari-Rouhani
, “
Chapter Two—Phononic and photonic crystals for sensing applications
,”
Adv. Appl. Mech.
52
,
105
145
(
2019
).
39.
R. H.
Olsson III
and
I.
El-Kady
, “
Microfabricated phononic crystal devices and applications
,”
Meas. Sci. Technol.
20
,
012002
(
2009
).
40.
J.
Liu
,
H.
Guo
, and
T.
Wang
, “
A review of acoustic metamaterials and phononic crystals
,”
Crystals
10
,
305
(
2020
).
41.
W.
Li
,
F.
Meng
,
Y.
Chen
,
Y.
Li
, and
X.
Huang
, “
Topology optimization of photonic and phononic crystals and metamaterials: A review
,”
Adv. Theory Simul.
2
,
1900017
(
2019
).
42.
S. M.
Sadat
and
R. Y.
Wang
, “
A machine learning based approach for phononic crystal property discovery
,”
J. Appl. Phys.
128
,
025106
(
2020
).
43.
M.
de’Michieli Vitturi
, Navier-Stokes equations in cylindrical coordinates, available at https://demichie.github.io/NS_cylindrical/.
44.
A.
Rona
, “
The acoustic resonance of rectangular and cylindrical cavities
,”
J. Algor. Comput. Technol.
1
,
329
356
(
2007
).
45.
K.
Ono
, “
Frequency dependence of receiving sensitivity of ultrasonic transducers and acoustic emission sensors
,”
Sensors
18
,
3861
(
2018
).
46.
R.
Kuhnkies
and
W.
Schaaffs
, “
Untersuchungen an adiabatisch und isotherm aufgenommenen Schallkennlinien binärer Mischungen
,”
Acta Acustica united with Acustica
13
,
407
(
1963
); available at https://www.ingentaconnect.com/content/dav/aaua/1963/00000013/00000006/art00007#expand/.
47.
R.
Lucklum
,
N.
Mukhin
,
B.
Djafari Rouhani
, and
Y.
Pennec
, “
Phononic crystal sensors—A new class of resonant sensors chances and challenges for the determination of liquid properties
,”
Front. Mech. Eng. Micro- Nanoelectromech. Syst.
(published online).
You do not currently have access to this content.