We present results of near-field radio-frequency (RF) imaging at micrometer resolution using an ensemble of nitrogen-vacancy (NV) centers in diamond. The spatial resolution of RF imaging is set by the resolution of an optical microscope, which is markedly higher than the existing RF imaging methods. High sensitivity RF field detection is demonstrated through spin locking. SCROFULOUS composite pulse sequence is used for manipulation of the spins in the NV centers for reduced sensitivity to possible microwave pulse amplitude error in the field of view. We present procedures for acquiring an RF field image under spatially inhomogeneous microwave field distribution and demonstrate a near-field RF imaging of an RF field emitted from a photolithographically defined metal wire. The obtained RF field image indicates that the RF field intensity has maxima in the vicinity of the edges of the wire, in accord with a calculated result by a finite-difference time-domain method. Our method is expected to be applied in a broad variety of application areas, such as material characterizations, characterization of RF devices, and medical fields.

1.
R.
Zoughi
,
Microwave Non-Destructive Testing and Evaluation
(
Kluwer Academic Publishers
,
Dordrecht
,
2000
).
2.
S. S.
Ahmed
,
A.
Schiessl
,
F.
Gumbmann
,
M.
Tiebout
,
S.
Methfessel
, and
L.-P.
Schmidt
, “
Advanced microwave imaging
,”
IEEE Microwave Mag.
13
,
26
43
(
2012
).
3.
G.
Mariani
,
S.
Nomoto
,
S.
Kashiwaya
, and
S.
Nomura
, “
System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond
,”
Sci. Rep.
10
,
4813
(
2020
).
4.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
45
(
2013
).
5.
V.
Stepanov
,
F. H.
Cho
,
C.
Abeywardana
, and
S.
Takahashi
, “
High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond
,”
Appl. Phys. Lett.
106
,
063111
(
2015
).
6.
A.
Franchois
,
A.
Joisel
,
C.
Pichot
, and
J.
Bolomey
, “
Quantitative microwave imaging with a 2.45 GHz planar microwave camera
,”
IEEE Trans. Med. Imag.
17
,
550
561
(
1998
).
7.
K.
Fujiwara
,
M.
Oogane
,
A.
Kanno
,
M.
Imada
,
J.
Jono
,
T.
Terauchi
,
T.
Okuno
,
Y.
Aritomi
,
M.
Morikawa
,
M.
Tsuchida
,
N.
Nakasato
, and
Y.
Ando
, “
Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors
,”
Appl. Phys. Exp.
11
,
023001
(
2018
).
8.
Y.
Adachi
,
D.
Oyama
,
Y.
Terazono
,
T.
Hayashi
,
T.
Shibuya
, and
S.
Kawabata
, “
Calibration of room temperature magnetic sensor array for biomagnetic measurement
,”
IEEE Trans. Magn.
55
,
5000506
(
2019
).
9.
S. R.
Hartmann
and
E. L.
Hahn
, “
Nuclear double resonance in the rotating frame
,”
Phys. Rev.
128
,
2042
2053
(
1962
).
10.
C. P.
Slichter
and
D.
Ailion
, “
Low-field relaxation and the study of ultraslow atomic motions by magnetic resonance
,”
Phys. Rev.
135
,
A1099
A1110
(
1964
).
11.
Y. S.
Bai
,
A. G.
Yodh
, and
T. W.
Mossberg
, “
Selective excitation of dressed atomic states by use of phase-controlled optical fields
,”
Phys. Rev. Lett.
55
,
1277
1280
(
1985
).
12.
H.
Ito
,
T.
Ito
, and
T.
Yabuzaki
, “
Accumulative transfer of transverse magnetic moment between spin-locked Rb and Cs atoms
,”
J. Phys. Soc. Jpn.
63
,
1337
1344
(
1994
).
13.
F.
Yan
,
S.
Gustavsson
,
J.
Bylander
,
X.
Jin
,
F.
Yoshihara
,
D. G.
Cory
,
Y.
Nakamura
,
T. P.
Orlando
, and
W. D.
Oliver
, “
Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution
,”
Nat. Commun.
4
,
2337
(
2013
).
14.
M.
Loretz
,
T.
Rosskopf
, and
C. L.
Degen
, “
Radio-frequency magnetometry using a single electron spin
,”
Phys. Rev. Lett.
110
,
017602
(
2013
).
15.
T.
Rosskopf
,
A.
Dussaux
,
K.
Ohashi
,
M.
Loretz
,
R.
Schirhagl
,
H.
Watanabe
,
S.
Shikata
,
K. M.
Itoh
, and
C. L.
Degen
, “
Investigation of surface magnetic noise by shallow spins in diamond
,”
Phys. Rev. Lett.
112
,
147602
(
2014
).
16.
M. H.
Levitt
, “
Composite pulses
,”
Prog. Nucl. Magn. Reson. Spectrosc.
18
,
61
122
(
1986
).
17.
S.
Wimperis
, “
Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments
,”
J. Magn. Reson. Ser. A
109
,
221
231
(
1994
).
18.
H. K.
Cummins
,
G.
Llewellyn
, and
J. A.
Jones
, “
Tackling systematic errors in quantum logic gates with composite rotations
,”
Phys. Rev. A
67
,
042308
(
2003
).
19.
J. A.
Jones
, “
Robust Ising gates for practical quantum computation
,”
Phys. Rev. A
67
,
012317
(
2003
).
20.
J.
Zopes
,
K.
Sasaki
,
K. S.
Cujia
,
J. M.
Boss
,
K.
Chang
,
T. F.
Segawa
,
K. M.
Itoh
, and
C. L.
Degen
, “
High-resolution quantum sensing with shaped control pulses
,”
Phys. Rev. Lett.
119
,
260501
(
2017
).
21.
K.
Sasaki
,
Y.
Monnai
,
S.
Saijo
,
R.
Fujita
,
H.
Watanabe
,
J.
Ishi-Hayase
,
K. M.
Itoh
, and
E.
Abe
, “
Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond
,”
Rev. Sci. Instrum.
87
,
053904
(
2016
).
22.
B. K.
Ofori-Okai
,
S.
Pezzagna
,
K.
Chang
,
M.
Loretz
,
R.
Schirhagl
,
Y.
Tao
,
B. A.
Moores
,
K.
Groot-Berning
,
J.
Meijer
, and
C. L.
Degen
, “
Spin properties of very shallow nitrogen vacancy defects in diamond
,”
Phys. Rev. B
86
,
081406
(
2012
).
23.
A.
Oga
, “
How to use OpenFDTD
,”
RF World
39
,
56
72
(
2017
) (in Japanese).
24.
S.
Sasaki
,
T.
Miura
,
K.
Ikeda
,
M.
Sakai
,
T.
Sekikawa
,
M.
Saito
,
T.
Yuge
, and
Y.
Hirayama
, “
1/f2 spectra of decoherence noise on 75As nuclear spins in bulk GaAs
,”
Sci. Rep.
10
,
10674
(
2020
).
25.
J.-M.
Cai
,
B.
Naydenov
,
R.
Pfeiffer
,
L. P.
McGuinness
,
K. D.
Jahnke
,
F.
Jelezko
,
M. B.
Plenio
, and
A.
Retzker
, “
Robust dynamical decoupling with concatenated continuous driving
,”
New J. Phys.
14
,
113023
(
2012
).
26.
M.
Pfender
,
N.
Aslam
,
G.
Waldherr
,
P.
Neumann
, and
J.
Wrachtrup
, “
Single-spin stochastic optical reconstruction microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
14669
14674
(
2014
).
27.
Y.
Silani
,
F.
Hubert
, and
V. M.
Acosta
, “
Stimulated emission depletion microscopy with diamond silicon vacancy centers
,”
ACS Photonics
6
,
2577
2582
(
2019
).
You do not currently have access to this content.