We propose an absorption–diffusion integrated metasurface that achieves high-performance stealth of electromagnetic waves with high angular stability in an ultrabroad frequency band. To this end, we designed two types of absorbing meta-atoms with reflection coefficients less than −10 dB in the broadband, which can maintain a phase difference of ∼180° in the range of 5.35–13.5 GHz. Then, the genetic algorithm is utilized to optimize the relationship between the arbitrary coding sequence of meta-atoms and their far-field patterns to obtain the optimal arrangement of the meta-atoms of the metasurface. The simulation and test results of the sample show that the polarization-independent radar cross section (RCS) reduction characteristic over −10 dB in the broadband range (4–18 GHz in simulation and 4.8–16.8 GHz in test) can be achieved. Particularly, the proposed metasurface achieves RCS reduction values over −30 dB in the 7.7–12.4 GHz range. At the same time, the RCS reduction behavior of −10 dB can be maintained to 45° oblique incidence. Experiment and simulation results demonstrate the effectiveness of the present scheme, and the proposed metasurface exhibits better RCS reduction performance than other published literature. This work is of great significance for the rapid design of high-performance absorption–diffusion integrated metasurfaces, which have important prospects in stealth, camouflage, and other related applications.

1.
F.
Qin
,
L.
Ding
,
L.
Zhang
,
F.
Monticone
,
C. C.
Chum
,
J.
Deng
,
S.
Mei
,
Y.
Li
,
J.
Teng
, and
M.
Hong
,
Sci. Adv.
2
,
e1501168
(
2016
).
2.
L.
La Spada
,
S.
Haq
, and
Y.
Hao
,
Radio Sci.
52
,
1049
1057
(
2017
).
3.
W.
Cai
,
U. K.
Chettiar
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Nat. Photonics
1
,
224
227
(
2007
).
4.
Y.
Liu
,
Y.
Hao
,
K.
Li
, and
S.
Gong
,
IEEE Antennas Wirel. Propag. Lett.
15
,
80
83
(
2016
).
5.
F.
Sun
,
Y.
Zhang
,
J.
Evans
, and
S.
He
,
Prog. Electromagn. Res.
165
,
107
117
(
2019
).
6.
Y. C.
Song
,
J.
Ding
,
C. J.
Guo
,
Y. H.
Ren
, and
J. K.
Zhang
,
Mod. Phys. Lett. B
30
,
1650233
(
2016
).
7.
R.
Selvaraju
,
M. H.
Jamaluddin
,
M. R.
Kamarudin
,
J.
Nasir
, and
M. H.
Dahri
,
Prog. Electromagn. Res. C
83
,
217
228
(
2018
).
8.
R. L.
Fante
and
M. T.
Mccormack
,
IEEE Trans. Antennas Propag.
36
,
1443
1454
(
1988
).
9.
Z.
Zhou
,
K.
Chen
,
J.
Zhao
,
C.
Ping
, and
L.
Yue
,
Opt. Express
25
,
30241
(
2017
).
10.
T.
Li
,
K.
Chen
,
G.
Ding
,
J.
Zhao
,
T.
Jiang
, and
Y.
Feng
,
Opt. Express
26
,
34384
(
2018
).
11.
L. J.
Du Toit
,
IEEE Antennas Propag. Mag.
36
,
17
25
(
1994
).
12.
M.
Li
,
S. Q.
Xiao
,
Y. Y.
Bai
, and
B. Z.
Wang
,
IEEE Antennas Wirel. Propag. Lett.
11
,
748
751
(
2012
).
13.
C.
Huang
,
W.
Pan
,
X.
Ma
, and
X.
Luo
,
IEEE Antennas Wirel. Propaga. Lett.
14
,
1369
1372
(
2015
).
14.
D. M.
Pozar
,
IEEE Microw. Guided Wave Lett.
2
,
196
198
(
1992
).
15.
C.
Watts
,
X.
Liu
, and
W.
Padilla
,
Adv. Mater.
24
,
OP98
OP120
(
2012
).
16.
B. A.
Munk
,
P.
Munk
, and
J.
Pryor
,
IEEE Trans. Antennas Propag.
55
,
186
193
(
2007
).
17.
G. H.
Yang
,
X. X.
Liu
,
Y. L.
Lv
,
J. H.
Fu
,
Q.
Wu
, and
X.
Gu
,
J. Appl. Phys.
115
,
17E523
(
2014
).
18.
S.
Gu
,
J. P.
Barrett
,
T. H.
Hand
,
B. I.
Popa
, and
S. A.
Cummer
,
J. Appl. Phys.
108
,
064913
(
2010
).
19.
F.
Ding
,
Y.
Cui
,
X.
Ge
,
Y.
Jin
, and
S.
He
,
Appl. Phys. Lett.
,
100
, 103506 (
2011
).
20.
P.
Min
,
Z.
Song
,
L.
Yang
,
B.
Dai
, and
J.
Zhu
,
Opt. Express
28
,
19518
(
2020
).
21.
Y.
Zhao
,
X.
Cao
,
J.
Gao
,
Y.
Sun
,
H.
Yang
,
X.
Liu
,
Y.
Zhou
,
T.
Han
, and
W.
Chen
,
Sci. Rep.
6
,
23896
(
2016
).
22.
M.
Zhang
,
X.
Yang
,
J.
Luo
,
T.
Zhou
,
Z.
Li
,
X.
Lei
, and
J.
Chen
,
J. Electron. Mater.
49
,
5561
5569
(
2020
).
23.
L.
Ali
,
Q.
Li
,
T. A.
Khan
,
J.
Yi
, and
X.
Chen
,
Materials
12
,
2708
(
2019
).
24.
F.
Yuan
,
H.
Xu
,
X.
Jia
,
G.
Wang
, and
Y.
Fu
,
IEEE Trans. Antennas Propag.
68
,
2463
2468
(
2020
).
25.
J.
Su
,
H.
He
,
Y.
Lu
,
H.
Yin
,
G.
Liu
, and
Z.
Li
,
Phys. Rev. Appl.
11
, 044088 (
2019
).
26.
P.
Xie
,
G. M.
Wang
,
H. P.
Li
,
Y. W.
Wang
, and
B.
Zong
,
Prog. Electromag. Res.
169
,
103
115
(
2020
).
27.
J.
Yang
,
C.
Huang
,
J.
Song
,
C.
Ji
, and
X.
Luo
,
J. Phys. D: Appl. Phys.
53
,
25102
(
2020
).
28.
K.
Chen
,
L.
Cui
,
Y.
Feng
,
J.
Zhao
,
T.
Jiang
, and
B.
Zhu
,
Opt. Express
25
,
5571
(
2017
).
29.
K.
Chen
,
W.
Guo
,
G.
Ding
,
J.
Zhao
,
T.
Jiang
, and
Y.
Feng
,
Opt. Express
28
,
12638
(
2020
).
30.
Y.
Zhuang
,
G.
Wang
,
Q.
Zhang
, and
C.
Zhou
,
IEEE Access
6
,
17306
17312
(
2018
).
31.
S.
Sui
,
H.
Ma
,
J.
Wang
,
Y.
Pang
,
M.
Feng
,
Z.
Xu
, and
S.
Qu
,
J. Phys. D: Appl. Phys.
51
,
065603
(
2018
).
32.
H.
Xu
,
L.
Zhang
,
Y.
Kim
,
G.
Wang
,
X.
Zhang
,
Y.
Sun
,
X.
Ling
,
H.
Liu
,
Z.
Chen
, and
C.
Qiu
,
Adv. Opt. Mater.
6
,
1800010
(
2018
).
33.
H.
Xu
,
S.
Ma
,
X.
Ling
,
X.
Zhang
,
S.
Tang
,
T.
Cai
,
S.
Sun
,
Q.
He
, and
L.
Zhou
,
ACS Photonics
5
,
1691
1702
(
2018
).
34.
B.
Sima
,
K.
Chen
,
X.
Luo
,
J.
Zhao
, and
Y.
Feng
,
Phys. Rev. Appl.
10
,
064043
(
2018
).
35.
Z.
Meng
,
C.
Tian
,
C.
Xu
,
J.
Wang
,
X.
Li
,
S.
Huang
,
Q.
Fan
, and
S.
Qu
,
Opt. Express
28
,
27774
27784
(
2020
).
36.
Y.
Shen
,
J.
Zhang
,
L.
Shen
,
S.
Sui
,
Y.
Pang
,
J.
Wang
,
H.
Ma
, and
S.
Qo
,
Opt. Express
26
,
28363
(
2018
).
37.
J.
Zhao
,
C.
Zhang
,
Q.
Cheng
,
J.
Yang
, and
T. J.
Cui
,
Appl. Phys. Lett.
112
,
073504
(
2018
).
38.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
,
333
337
(
2011
).
39.
N. K.
Emani
,
A. V.
Kildishev
,
A.
Boltasseva
,
V. M.
Shalaev
, and
X.
Ni
,
Science
335
,
427
(
2012
).
40.
S.
Sun
,
K.
Yang
,
C.
Wang
,
T.
Juan
,
W. T.
Chen
,
C. Y.
Liao
,
Q.
He
,
S.
Xiao
,
W.
Kung
,
G.
Guo
,
L.
Zhou
, and
D. P.
Tsai
,
Nano Lett.
12
,
6223
6229
(
2012
).
41.
T.
Cai
,
S.
Tang
,
B.
Zheng
,
G.
Wang
, and
H.
Chen
,
Adv. Photonics
3
, 016001 (
2020
).
42.
T.
Cai
,
S.
Tang
,
G.
Wang
,
H.
Xu
,
S.
Sun
,
Q.
He
, and
L.
Zhou
,
Adv. Opt. Mater.
5
,
1600506
(
2017
).
43.
T.
Cai
,
G.
Wang
,
S.
Tang
,
H.
Xu
,
J.
Duan
,
H.
Guo
,
F.
Guan
,
S.
Sun
,
Q.
He
, and
L.
Zhou
,
Phys. Rev. Appl.
8
, 034033 (
2017
).
44.
A.
Pors
,
M. G.
Nielsen
,
T.
Bernardin
,
J. C.
Weeber
, and
S. I.
Bozhevolnyi
,
Light Sci. Appl.
3
,
e197
(
2014
).
45.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
,
Nat. Nanotechnol.
10
,
308
312
(
2015
).
46.
W.
Luo
,
S.
Xiao
,
Q.
He
,
S.
Sun
, and
L.
Zhou
,
Adv. Opt. Mater.
3
,
1102
1108
(
2015
).
47.
I.
Yulevich
,
E.
Maguid
,
N.
Shitrit
,
D.
Veksler
,
V.
Kleiner
, and
E.
Hasman
,
Phys. Rev. Lett.
115
,
205501
(
2015
).
48.
F.
Ding
,
Z.
Wang
,
S.
He
,
V. M.
Shalaev
, and
A. V.
Kildishev
,
ACS Nano
9
,
4111
4119
(
2015
).
49.
S.
Yu
,
L.
Li
,
G.
Shi
,
C.
Zhu
,
X.
Zhou
, and
Y.
Shi
,
Appl. Phys. Lett.
108
,
121903
(
2016
).
50.
W.
Luo
,
S.
Sun
,
H.
Xu
,
Q.
He
, and
L.
Zhou
,
Phys. Rev. Appl.
7
, 044033 (
2017
).
51.
Y.
Ran
,
T.
Cai
,
L.
Shi
,
J.
Wang
,
J.
Liang
,
S.
Wu
,
J.
Li
, and
Y.
Liu
,
IEEE Access
8
,
111802
111810
(
2020
).
52.
H.
Xu
,
G.
Hu
,
Y.
Li
,
L.
Han
,
J.
Zhao
,
Y.
Sun
,
F.
Yuan
,
G.
Wang
,
Z. H.
Jiang
,
X.
Ling
,
T. J.
Cui
, and
C.
Qiu
,
Light Sci. Appl.
8
, 3 (
2019
).
53.
K.
Wang
,
J.
Zhao
,
Q.
Cheng
,
D. S.
Dong
, and
T. J.
Cui
,
Sci. Rep.
4
, 5935 (
2015
).
54.
H.
Sun
,
C.
Gu
,
X.
Chen
,
Z.
Li
,
L.
Liu
,
B.
Xu
, and
Z.
Zhou
,
Sci. Rep.
7
, 40782 (
2017
).
55.
C. A.
Balanis
,
Antenna Theory Analysis and Design
, 3rd ed. (
Wiley
,
New York
,
2015
).
You do not currently have access to this content.