Applying atmospheric plasma etching to the surface texturing process of silicon solar cells is a promising strategy for the current photovoltaic manufacturing industry due to its low equipment cost and good fabrication flexibility. This paper investigates the morphology evolution of the silicon surface etched by an Ar/CF4/O2 plasma and the associated optical properties. Results show that the generation of the light trapping structure on the polished silicon surface can be divided into two stages on the basis of the multi-scale morphological images and the quantitative evaluation of roughness parameters. The initial roughening stage mainly involves the formation of high-frequency nanoroughness that can act as an effective medium layer with a gradual refractive index. The resulting optical medium effect can reduce the surface reflectance within a broad range of wavelengths. At the next texturing stage, the low-frequency and high-amplitude microroughness dominates the morphology of the etched silicon surface. It features inverted parabolic structures with a high aspect ratio, which can cause multiple reflections of the incident light. The optical medium effect resulting from the nanoroughness is also inherited. Thus, the anti-reflectance property of the etched silicon surface is greatly improved. This work demonstrates that the light trapping properties of silicon surface etched by atmospheric plasma jet are a synergy of the optical medium effect and geometrical optics. Insights into the morphology evolution and optical properties of the textured surfaces are important for developing a new surface texturing process of silicon solar cells.

1.
L. C.
Andreani
,
A.
Bozzola
,
P.
Kowalczewski
,
M.
Liscidini
, and
L.
Redorici
,
Adv. Phys. X 
4
,
1548305
(
2019
).
2.
Y.
Rong
,
Y.
Hu
,
A.
Mei
,
H.
Tan
,
M. I.
Saidaminov
,
S. I.
Seok
,
M. D.
McGehee
,
E. H.
Sargent
, and
H.
Han
,
Science
361
,
1214
(
2018
).
3.
B.
Radfar
,
F.
Es
, and
R.
Turan
,
Renew. Energy
145
,
2707
2714
(
2020
).
4.
K. A.
Salman
,
Solar Energy
147
,
228
231
(
2017
).
5.
X.
Tan
,
W.
Yan
,
Y.
Tu
, and
C.
Deng
,
Opt. Express
25
,
14725
14731
(
2017
).
6.
D.
Murias
,
C.
Reyes-Betanzo
,
M.
Moreno
,
A.
Torres
,
A.
Itzmoyotl
,
R.
Ambrosio
,
M.
Soriano
,
J.
Lucas
, and
P. R. I.
Cabarrocas
,
Mater. Sci. Eng. B
177
,
1509
1513
(
2012
).
7.
B.
Kafle
,
T.
Freund
,
A.
Mannan
,
L.
Clochard
,
E.
Duffy
,
S.
Werner
,
P.
Saint-Cast
,
M.
Hofmann
,
J.
Rentsch
, and
R.
Preu
,
Energy Procedia
92
,
359
368
(
2016
).
8.
M.
Mews
,
C.
Leendertz
,
M.
Algasinger
,
S.
Koynov
, and
L.
Korte
,
Phys. Status Solidi (RRL)
8
,
831
835
(
2014
).
9.
M.
Steglich
,
T.
Käsebier
,
M.
Zilk
,
T.
Pertsch
,
E.
Kley
, and
A.
Tünnermann
,
J. Appl. Phys.
116
,
173503
(
2014
).
10.
M.
Otto
,
M.
Kroll
,
T.
Käsebier
,
R.
Salzer
,
A.
Tünnermann
, and
R. B.
Wehrspohn
,
Appl. Phys. Lett.
100
,
191603-1
191603-4
(
2012
).
11.
B.
Iandolo
,
A. P.
Sánchez Nery
,
R. S.
Davidsen
, and
O.
Hansen
,
Phys. Status Solidi (RRL)
13
,
1800477
(
2019
).
12.
M. M.
Plakhotnyuk
,
M.
Gaudig
,
R. S.
Davidsen
,
J. M.
Lindhard
,
J.
Hirsch
,
D.
Lausch
,
M. S.
Schmidt
,
E.
Stamate
, and
O.
Hansen
,
J. Appl. Phys.
122
,
143101
(
2017
).
13.
F. M. M.
Souren
,
J.
Rentsch
, and
M. C. M.
van de Sanden
,
Prog. Photovoltaics
23
,
352
366
(
2015
).
14.
L.
Bárdos
and
H.
Baránková
,
Vacuum
83
,
522
527
(
2008
).
15.
D. H.
Macdonald
,
A.
Cuevas
,
M. J.
Kerr
,
C.
Samundsett
,
D.
Ruby
,
S.
Winderbaum
, and
A.
Leo
,
Solar Energy
76
,
277
283
(
2004
).
16.
B.
Kafle
,
A. I.
Ridoy
,
P.
Saint-Cast
,
L.
Clochard
,
E.
Duffy
,
K.
Duncker
,
K.
Petter
,
M.
Hofmann
, and
J.
Rentsch
,
AIP Conf. Proc.
1999
,
050003
(
2018
).
17.
J. B.
Park
,
J. S.
Oh
,
E.
Gil
,
S.
Kyoung
,
J.
Kim
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
42
,
215201
(
2009
).
18.
D.
Lausch
,
J.
Hirscha
, and
N.
Bernhard
,
“Plasma texturing of silicon wafers and finished solar cell for mass production,”
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
(
IEEE
,
2018
).
19.
F. J.
Beck
,
A.
Polman
, and
K. R.
Catchpole
,
J. Appl. Phys.
105
,
114310
(
2009
).
20.
W.
Guo
,
S. K.
Anantharajan
,
X.
Zhang
, and
H.
Deng
,
J. Micro Nano Manuf.
8
,
024501
(
2020
).
21.
H.
Paetzelt
,
G.
Böhm
, and
T.
Arnold
,
Plasma Sources Sci. Technol.
24
,
025002
(
2015
).
22.
B. T.
Chan
,
E.
Kunnen
,
K.
Xu
,
W.
Boullart
, and
J.
Poortmans
,
IEEE J. Photovoltaics
3
,
152
158
(
2013
).
23.
P.
Panduranga
,
A.
Abdou
,
Z.
Ren
,
R. H.
Pedersen
, and
M. P.
Nezhad
,
J. Vac. Sci. Technol. B
37
,
061206
(
2019
).
24.
S.
Kim
,
J.
Park
,
J.
Kim
,
C.
Kim
, and
J.
Kim
,
ECS J. Solid State Sci. Technol.
8
,
Q76
Q79
(
2019
).
25.
M.
Moreno
,
D.
Daineka
, and
P. R.
I Cabarrocas
,
Sol. Energy Mater. Sol. Cells
94
,
733
737
(
2010
).
26.
I.
Zubel
and
M.
Kramkowska
,
Sens. Actuators A
115
,
549
556
(
2004
).
27.
P.
Papet
,
O.
Nichiporuk
,
A.
Kaminski
,
Y.
Rozier
,
J.
Kraiem
,
J. F.
Lelievre
,
A.
Chaumartin
,
A.
Fave
, and
M.
Lemiti
,
Sol. Energy Mater. Sol. Cells
90
,
2319
2328
(
2006
).
28.
P.
Wang
,
S.
Xiao
,
R.
Jia
,
H.
Sun
,
X.
Dai
,
G.
Su
, and
K.
Tao
,
Solar Energy
169
,
153
158
(
2018
).
29.
K. M.
Park
,
M. B.
Lee
, and
S. Y.
Choi
,
Sol. Energy Mater. Sol. Cells
132
,
356
362
(
2015
).
30.
D.
Payne
,
M.
Abbott
,
A.
Lopez
,
Y.
Zeng
,
T.
Fong
,
K.
McIntosh
,
J.
Cruz-Campa
,
R.
Davidsen
,
M.
Plakhotnyuk
, and
D. M.
Bagnall
, “Rapid optical modelling of plasma textured silicon,”
European Photovoltaic Solar Energy Conference
(EU PVSEC,
2017
).
31.
D.
Abi Saab
,
P.
Basset
,
M. J.
Pierotti
,
M. L.
Trawick
, and
D. E.
Angelescu
,
Phys. Rev. Lett.
113
,
265502
(
2014
).
32.
D.
Murias
,
M.
Moreno
,
C.
Reyes Betanzo
,
A.
Torres
,
P.
Rosales
,
J.
Martínez
,
R.
Ambrosio
,
P. R.
I Cabarrocas
,
N.
Carlos
, and
A.
Itzmoyotl
,
Phys. Status Solidi (a)
213
,
1937
1941
(
2016
).
33.
J.
Hirsch
,
M.
Gaudig
,
N.
Bernhard
, and
D.
Lausch
,
Appl. Surf. Sci.
374
,
252
256
(
2016
).
34.
A.
Schutze
,
J. Y.
Jeong
,
S. E.
Babayan
,
R. F.
Hicks
,
J.
Park
, and
G. S.
Selwyn
,
IEEE Trans. Plasma Sci.
26
,
1685
1694
(
1998
).
35.
M. J.
Johnson
,
D. R.
Boris
,
T. B.
Petrova
, and
S. G.
Walton
,
IEEE Trans. Plasma Sci.
47
,
434
444
(
2019
).
36.
M.
Gaudig
,
M.
Maiberg
,
M.
Plapp
, and
R. B.
Wehrspohn
,
J. Appl. Phys.
124
,
233302
(
2018
).
37.
F.
Kaule
,
B.
Köhler
,
J.
Hirsch
,
S.
Schoenfelder
, and
D.
Lausch
,
Sol. Energy Mater. Sol. Cells
185
,
511
516
(
2018
).
38.
P.
Zhang
,
C.
Chen
,
C.
Xiao
,
L.
Chen
,
L.
Jiang
, and
L.
Qian
,
Tribol. Int.
128
,
174
180
(
2018
).
39.
J.
Wu
,
P.
Zhang
,
D.
Yu
,
S.
Zhang
,
Q.
Xin
, and
Y.
Wan
,
Optik
214
,
164815
(
2020
).
40.
G.
Boulousis
,
V.
Constantoudis
,
G.
Kokkoris
, and
E.
Gogolides
,
Nanotechnology
19
,
255301
(
2008
).
41.
E.
Gogolides
,
Microelectron. Eng.
73–74
,
312
318
(
2004
).
42.
N.
Nakazaki
,
H.
Matsumoto
,
H.
Tsuda
,
Y.
Takao
,
K.
Eriguchi
, and
K.
Ono
,
Appl. Phys. Lett.
109
,
204101
(
2016
).
43.
E.
Yablonovitch
,
J. Opt. Soc. Am.
72
,
899
(
1982
).
44.
M. A.
Green
and
M. J.
Keevers
,
Prog. Photovoltaics
3
,
189
192
(
1995
).
45.
R. B.
Stephens
and
G. D.
Cody
,
Thin Solid Films
45
,
19
29
(
1977
).
46.
B.
Iandolo
,
A. P.
Sánchez Nery
,
R. S.
Davidsen
, and
O.
Hansen
,
Phys. Status Solidi (RRL)
13
,
1800477
(
2019
).
47.
Q.
Xin
,
X.
Su
, and
B.
Wang
,
Appl. Surf. Sci.
382
,
260
267
(
2016
).
48.
M.
Gaudig
,
J.
Hirsch
,
V.
Naumann
,
M.
Werner
,
S.
Großer
,
C.
Hagendorf
,
N.
Bernhard
, and
D.
Lausch
,
J. Appl. Phys.
121
,
063301
(
2017
).
49.
H. F.
Winters
,
D. B.
Graves
,
D.
Humbird
, and
S.
Tougaard
,
J. Vac. Sci. Technol. A
25
,
96
103
(
2007
).
50.
P.
Arora
,
T.
Nguyen
,
A.
Chawla
,
S.
Nam
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
37
,
061303
(
2019
).
You do not currently have access to this content.