The crystal structure of tungsten monocarbide (WC) is researched from 0 to 650 GPa through first principles calculations. The results verify that the experimental structure (hP2-WC) with the space group P6¯m2 is the most stable phase in a wide range of pressure. Above 231 GPa, a new stable structure (space group P63/mmc, hP4-WC) is found to be the most stable phase, and it will transform to a CsCl-type phase (cF8-WC) around 582 GPa. Phonon calculations reveal that the hP4-WC phase is dynamically stable and may be a metastable structure at ambient conditions. The cF8-WC phase possesses dynamical stability above 20 GPa. The hP4-WC phase is a low compressible material with a large bulk modulus of 377 GPa at zero pressure. The hardness values of hP2-WC and hP4-WC at zero pressure are 32 and 21 GPa, respectively, while the cF8-WC phase possesses a hardness of 21 GPa at 20 GPa, implying that these phases are potential hard materials. The temperature–pressure phase boundary of WC is obtained by means of the quasi-harmonic approximation method. As the temperature increases, the transition pressure from hP2-WC to hP4-WC remained nearly unchanged. The transition pressure between hP4-WC and cF8-WC decreases with the increasing temperature.

1.
D.
Gerlich
and
G. C.
Kennedy
,
J. Appl. Phys.
50
,
3331
(
1979
).
2.
G. M.
Amulele
,
M. H.
Manghnani
,
S.
Marriappan
,
X.
Hong
,
F.
Li
,
X.
Qin
, and
H. P.
Liermann
,
J. Appl. Phys.
103
,
113522
(
2008
).
3.
P.
Stoyanov
,
P.
Stemmer
,
T. T.
Järvi
,
R.
Merz
,
P. A.
Romero
,
M.
Scherge
,
M.
Kopnarski
,
M.
Moseler
,
A.
Fischer
, and
M.
Dienwiebel
,
ACS Appl. Mater. Interfaces
5
,
6123
(
2013
).
4.
D.
Druzhbin
and
R.
Myhill
,
Rev. Sci. Instrum.
87
,
024501
(
2016
).
5.
Y.
Zhang
,
Z.
Kou
,
Z.
Wang
,
M.
Yang
,
J.
Lu
,
H.
Liang
,
S.
Guan
,
Q.
Hu
,
H.
Gong
, and
D.
He
,
Ceram. Int.
45
,
8721
(
2019
).
6.
R. B.
Levy
and
M.
Boudart
,
Science
181
,
547
(
1973
).
7.
R. J.
Colton
,
J.-T. J.
Huang
, and
J. W.
Rabalais
,
Chem. Phys. Lett.
34
,
337
(
1975
).
8.
K.
Yan
,
S. K.
Kim
,
A.
Khorshidi
,
P. R.
Guduru
, and
A. A.
Peterson
,
J. Phys. Chem. C
121
,
6177
(
2017
).
9.
E. C.
Weigert
,
A. L.
Stottlemyer
,
M. B.
Zellner
, and
J. G.
Chen
,
J. Phys. Chem. C
111
,
14617
(
2007
).
10.
D. V.
Esposito
,
S. T.
Hunt
,
Y. C.
Kimmel
, and
J. G.
Chen
,
J. Am. Chem. Soc.
134
,
3025
(
2012
).
11.
Z. Z.
Fang
,
X.
Wang
,
T.
Ryu
,
K. S.
Hwang
, and
H. Y.
Sohn
,
Int. J. Refract. Met. Hard Mater.
27
,
288
(
2009
).
12.
Z.
Lin
,
L.
Wang
,
J.
Zhang
,
H.-k.
Mao
, and
Y.
Zhao
,
Appl. Phys. Lett.
95
,
211906
(
2009
).
13.
A. S.
Kurlov
and
G. A.
I
, Tungsten Carbides: Structure, Properties and Application in Hardmetals (
Springer International Publishing
,
2013
).
14.
E. I.
Isaev
,
S. I.
Simak
,
I. A.
Abrikosov
,
R.
Ahuja
,
Y. K.
Vekilov
,
M. I.
Katsnelson
,
A. I.
Lichtenstein
, and
B.
Johansson
,
J. Appl. Phys.
101
,
123519
(
2007
).
15.
K. D.
Litasov
,
A.
Shatskiy
,
Y.
Fei
,
A.
Suzuki
,
E.
Ohtani
, and
K.
Funakoshi
,
J. Appl. Phys.
108
,
053513
(
2010
).
16.
D. V.
Suetin
,
I. R.
Shein
, and
A. L.
Ivanovskii
,
J. Phys. Chem. Solids
70
,
64
(
2009
).
17.
Y.
Li
,
Y.
Gao
,
B.
Xiao
,
T.
Min
,
Z.
Fan
,
S.
Ma
, and
L.
Xu
,
J. Alloys Compd.
502
,
28
(
2010
).
18.
X. Y.
Cheng
,
J. H.
Zhou
,
X.
Xiong
,
Y.
Du
, and
C.
Jiang
,
Comput. Mater. Sci.
59
,
41
(
2012
).
19.
M.
Lee
and
R. S.
Gilmore
,
J. Mater. Sci.
17
,
2657
(
1982
).
20.
M.
Fukuichi
,
H.
Momida
,
M.
Geshi
,
M.
Michiuchi
,
K.
Sogabe
, and
T.
Oguchi
,
J. Phys. Soc. Jpn.
87
,
044602
(
2018
).
21.
M.
Kavitha
,
G.
Sudha Priyanga
,
R.
Rajeswarapalanichamy
, and
K.
Iyakutti
,
J. Phys. Chem. Solids
77
,
38
(
2015
).
22.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
23.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
27.
D.
Alfè
,
Comput. Phys. Commun.
180
,
2622
(
2009
).
29.
Y.
Le Page
and
P.
Saxe
,
Phys. Rev. B
65
,
104104
(
2002
).
30.
D. V.
Suetin
,
I. R.
Shein
, and
A. L.
Ivanovskii
,
Phys. Status Solidi B
245
,
1590
(
2008
).
31.
F.
Mouhat
and
F.-X.
Coudert
,
Phys. Rev. B
90
,
224104
(
2014
).
32.
G. V.
Sin’ko
and
N. A.
Smirnov
,
Phys. Rev. B
71
,
214108
(
2005
).
33.
H. J.
McSkimin
,
P.
Andreatch
, and
P.
Glynn
,
J. Appl. Phys.
43
,
985
(
1972
).
34.
X.-Q.
Chen
,
H.
Niu
,
D.
Li
, and
Y.
Li
,
Intermetallics
19
,
1275
(
2011
).
35.
A.
Misra
and
W. Y.
Ching
,
Sci. Rep.
3
,
1488
(
2013
).
36.
Y.
Liang
,
Y.
Gou
,
X.
Yuan
,
Z.
Zhong
, and
W.
Zhang
,
Chem. Phys. Lett.
580
,
48
(
2013
).
37.
X.-Q.
Chen
,
H.
Niu
,
C.
Franchini
,
D.
Li
, and
Y.
Li
,
Phys. Rev. B
84
,
121405(R)
(
2011
).
38.
Z.-J.
Wu
,
E.-J.
Zhao
,
H.-P.
Xiang
,
X.-F.
Hao
,
X.-J.
Liu
, and
J.
Meng
,
Phys. Rev. B
76
,
054115
(
2007
).
39.
J. G.
Berryman
,
J. Mech. Phys. Solids
53
,
2141
(
2005
).
40.
S. F.
Pugh
,
London Edinburgh Dublin Philos. Mag. J. Sci.
45
,
823
(
1954
).
41.
F.
Gao
,
Phys. Rev. B
73
,
132104
(
2006
).
42.
A.
Otero-de-la-Roza
,
D.
Abbasi-Pérez
, and
V.
Luaña
,
Comput. Phys. Commun.
182
,
2232
(
2011
).
You do not currently have access to this content.