Tin and silicon incorporate on gallium sites in Ga2O3 and act as shallow donors. The monoclinic structure of Ga2O3 has two inequivalent Ga sites; density functional theory calculations for bulk show that Sn prefers the octahedral site, while Si prefers the tetrahedral site. Experiments have indicated that Si and Sn can also incorporate on the thermodynamically less preferred site. We use density functional theory to study the adsorption of Si and Sn and also the co-adsorption of these impurities with Ga and O adatoms on the Ga2O3(010) surface. We identify a number of surface reconstructions in which Si adatoms prefer octahedral sites and Sn adatoms prefer tetrahedral sites. By applying the electron counting rule, we also study the mechanisms of the preferred adsorption sites for Si and Sn. We conclude that Si and Sn can also occupy the thermodynamically unfavored site due to surface reconstructions during the growth, which potentially leads to Si and Sn occupying both octahedral and tetrahedral sites in Ga2O3.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
W. S.
Hwang
,
A.
Verma
,
H.
Peelaers
,
V.
Protasenko
,
S.
Rouvimov
,
H.
Xing
,
A.
Seabaugh
,
W.
Haensch
,
C. G.
Van de Walle
,
Z.
Galazka
,
M.
Albrecht
,
R.
Fornari
, and
D.
Jena
, “
High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes
,”
Appl. Phys. Lett.
104
,
203111
(
2014
).
3.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
, “
Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors
,”
Jpn. J. Appl. Phys.
46
,
7217
(
2007
).
4.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
, “
Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
70
,
3561
3563
(
1997
).
5.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
6.
N. K.
Kalarickal
,
Z.
Xia
,
J.
McGlone
,
S.
Krishnamoorthy
,
W.
Moore
,
M.
Brenner
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3
,”
Appl. Phys. Lett.
115
,
152106
(
2019
).
7.
S.
Krishnamoorthy
,
Z.
Xia
,
S.
Bajaj
,
M.
Brenner
, and
S.
Rajan
, “
Delta-doped β-gallium oxide field-effect transistor
,”
Appl. Phys. Express
10
,
051102
(
2017
).
8.
S.
Rafique
,
M. R.
Karim
,
J. M.
Johnson
,
J.
Hwang
, and
H.
Zhao
, “
LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates
,”
Appl. Phys. Lett.
112
,
052104
(
2018
).
9.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
M. J.
Tadjer
,
R. H.
French
, and
H.
Zhao
, “
Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition
,”
Appl. Phys. Lett.
109
,
132103
(
2016
).
10.
Z.
Feng
,
A.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
,
250601
(
2019
).
11.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
, “
Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy
,”
Appl. Phys. Express
5
,
035502
(
2012
).
12.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
, “
Si-and Sn-doped homoepitaxial β-Ga2O3 layers grown by movpe on (010)-oriented substrates
,”
ECS J. Solid State Sci. Technol.
6
,
Q3040
(
2016
).
13.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
14.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
et al., “
On the bulk β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Cryst. Growth
404
,
184
191
(
2014
).
15.
A.
Bouzid
, and
A.
Pasquarello
, “
Defect formation energies of interstitial C, Si, and Ge impurities in β-Ga2O3
,”
Phys. Status Solidi RRL
13
,
1800633
(
2019
).
16.
S.
Lany
, “
Defect phase diagram for doping of Ga2O3
,”
APL Mater.
6
,
046103
(
2018
).
17.
K.
Iwaya
,
R.
Shimizu
,
H.
Aida
,
T.
Hashizume
, and
T.
Hitosugi
, “
Atomically resolved silicon donor states of β-Ga2O3
,”
Appl. Phys. Lett.
98
,
142116
(
2011
).
18.
J. M.
Johnson
,
Z.
Chen
,
J. B.
Varley
,
C. M.
Jackson
,
E.
Farzana
,
Z.
Zhang
,
A. R.
Arehart
,
H.-L.
Huang
,
A.
Genc
,
S. A.
Ringel
et al., “
Unusual formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga2O3
,”
Phys. Rev. X
9
,
041027
(
2019
).
19.
P.
Mazzolini
,
A.
Falkenstein
,
C.
Wouters
,
R.
Schewski
,
T.
Markurt
,
Z.
Galazka
,
M.
Martin
,
M.
Albrecht
, and
O.
Bierwagen
, “
Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (2¯01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
,”
APL Mater.
8
,
011107
(
2020
).
20.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
21.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
23.
M.
Wang
,
S.
Mu
, and
C. G.
Van de Walle
, “
Role of Ga and In adatoms in the epitaxial growth of β-Ga2O3
,”
Phys. Rev. B
102
,
035303
(
2020
).
24.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
, “
A reinvestigation of β-gallium oxide
,”
Acta Crystallogr. C: Cryst. Struct. Commun.
52
,
1336
1338
(
1996
).
25.
M.
Pashley
, “
Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs (001) and ZnSe (001)
,”
Phys. Rev. B
40
,
10481
(
1989
).
26.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
2007
).
You do not currently have access to this content.