We develop a theoretical model for thermal conductivity of α-U that combines density functional theory calculations and the coupled electron–phonon Boltzmann transport equation. The model incorporates both electron and phonon contributions to thermal conductivity and achieves good agreement with experimental data over a wide temperature range. The dominant scattering mechanism governing thermal transport in α-U at different temperatures is examined. By including phonon–defect and electron–defect scatterings in the model, we study the effect of point defects including U-vacancy, U-interstitial, and Zr-substitution on the thermal conductivity of α-U. The degradation of anisotropic thermal conductivity due to point defects as a function of defect concentration, defect type, and temperature is reported. This model provides insights into the impact of defects on both phonon and electron thermal transport. It will promote the fundamental understanding of thermal transport in α-U and provide a ground for investigation of coupled electron–phonon transport in metallic materials.

1.
G. H.
Lander
,
E. S.
Fisher
, and
S. D.
Bader
, “
The solid-state properties of uranium: A historical perspective and review
,”
Adv. Phys.
43
(
1
),
1
111
(
1994
).
2.
K. T.
Moore
and
G.
van der Laan
, “
Nature of the 5f states in actinide metals
,”
Rev. Mod. Phys.
81
(
1
),
235
(
2009
).
3.
J. C.
Marmeggi
,
R.
Currat
,
A.
Bouvet
, and
G. H.
Lander
, “
Phonon softening in alpha-uranium associated with the CDW transition
,”
Physica B
263
,
624
626
(
1999
).
4.
L.
Fast
,
O.
Eriksson
,
B.
Johansson
,
J. M.
Wills
,
G.
Straub
,
H.
Roeder
, and
L.
Nordström
, “
Theoretical aspects of the charge density wave in uranium
,”
Phys. Rev. Lett.
81
(
14
),
2978
(
1998
).
5.
C. S.
Barrett
,
M. H.
Mueller
, and
R. L.
Hitterman
, “
Crystal structure variations in alpha uranium at low temperatures
,”
Phys. Rev.
129
(
2
),
625
(
1963
).
6.
P.
Söderlind
, “
First-principles elastic and structural properties of uranium metal
,”
Phys. Rev. B
66
(
8
),
085113
(
2002
).
7.
S.
Tan
,
X.
Lai
,
Y.
Zhang
, and
L.
Huang
, “
First-principles study of elastic, band structure and optical properties of uranium
,”
J. At. Mol. Phys.
25
(
5
),
1028
1034
(
2008
).
8.
Y. S.
Touloukian
,
R. W.
Powell
,
C. Y.
Ho
, and
P. G.
Klemens
,
Thermophysical Properties of Matter—The TPRC Data Series. Volume 1. Thermal Conductivity-Metallic Elements and Alloys (Reannouncement). Data Book
(
Purdue Univ.
,
Lafayette
,
IN
,
1970
).
9.
R. O. A.
Hall
and
J. A.
Lee
, “
The thermal conductivity of α uranium between 5 and 100 K
,”
J. Low Temp. Phys.
4
(
4
),
415
419
(
1971
).
10.
Y.
Takahashi
,
M.
Yamawaki
, and
K.
Yamamoto
, “
Thermophysical properties of uranium-zirconium alloys
,”
J. Nucl. Mater.
154
(
1
),
141
144
(
1988
).
11.
S.
Kaity
,
J.
Banerjee
,
M. R.
Nair
,
K.
Ravi
,
S.
Dash
,
T. R. G.
Kutty
,
A.
Kumar
, and
R. P.
Singh
, “
Microstructural and thermophysical properties of U–6 wt.% Zr alloy for fast reactor application
,”
J. Nucl. Mater.
427
(
1–3
),
1
11
(
2012
).
12.
S.
Zhou
,
R.
Jacobs
,
W.
Xie
,
E.
Tea
,
C.
Hin
, and
D.
Morgan
, “
Combined ab initio and empirical model of the thermal conductivity of uranium, uranium-zirconium, and uranium-molybdenum
,”
Phys. Rev. Mater.
2
(
8
),
083401
(
2018
).
13.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
2001
).
14.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Rinehart and Winston
,
New York
,
1976
), Vol. 2005.
15.
X. Y.
Liu
,
C. R.
Stanek
, and
A. D. R.
Andersson
, “Effect of point defects on the thermal conductivity of UO2: molecular,” Report No. LA-UR-15-23625, 2015.
16.
A.
Resnick
,
K.
Mitchell
,
J.
Park
,
E. B.
Farfán
, and
T.
Yee
, “
Thermal transport study in actinide oxides with point defects
,”
Nucl. Eng. Technol.
51
(
5
),
1398
1405
(
2019
).
17.
U. D.
Wdowik
,
V.
Buturlim
,
L.
Havela
, and
D.
Legut
, “
Effect of carbon vacancies and oxygen impurities on the dynamical and thermal properties of uranium monocarbide
,”
J. Nucl. Mater.
545
,
152547
(
2021
).
18.
Y.
Li
,
A.
Chernatynskiy
,
J. R.
Kennedy
,
S. B.
Sinnott
, and
S. R.
Phillpot
, “
Lattice expansion by intrinsic defects in uranium by molecular dynamics simulation
,”
J. Nucl. Mater.
475
,
6
18
(
2016
).
19.
B. A.
Loomis
and
S. B.
Gerber
, “
Length and electrical resistivity changes of neutron irradiated uranium
,”
Philos. Mag.
18
(
153
),
539
553
(
1968
).
20.
E. Y.
Chen
,
C.
Deo
, and
R.
Dingreville
, “
Atomistic simulations of temperature and direction dependent threshold displacement energies in α-and γ-uranium
,”
Comput. Mater. Sci.
157
,
75
86
(
2019
).
21.
T. M.
Tritt
,
Thermal Conductivity: Theory, Properties, and Applications
(
Springer Science & Business Media
,
2005
).
22.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
(
6
),
1747
1758
(
2014
).
23.
J. D.
Gale
, “
GULP: A computer program for the symmetry-adapted simulation of solids
,”
J. Chem. Soc. Faraday Trans.
93
(
4
),
629
637
(
1997
).
24.
A.
Matthiessen
, “Report of the British Association for the Advancement of Science,”
Rep. Br. Assoc.
32
,
144
150
(
1862
)
25.
T.
Feng
and
X.
Ruan
, “
Higher-order phonon scattering: Advancing the quantum theory of phonon linewidth, thermal conductivity and thermal radiative properties
,” in
Nanoscale Energy Transport: Emerging Phenomena, Methods and Applications
(IOP Publishing,
2020
), p.
2-1
.
26.
A.
Ward
,
D. A.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
, “
Ab initio theory of the lattice thermal conductivity in diamond
,”
Phys. Rev. B
80
(
12
),
125203
(
2009
).
27.
A.
Pippard
, “
CXXII. Ultrasonic attenuation in metals
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
46
(
381
),
1104
1114
(
1955
).
28.
P.
Lindenfeld
and
W. B.
Pennebaker
, “
Lattice conductivity of copper alloys
,”
Phys. Rev.
127
(
6
),
1881
(
1962
).
29.
J.
Yang
,
D. T.
Morelli
,
G. P.
Meisner
,
W.
Chen
,
J. S.
Dyck
, and
C.
Uher
, “
Influence of electron-phonon interaction on the lattice thermal conductivity of Co1−xNixSb3
,”
Phys. Rev. B
65
(
9
),
094115
(
2002
).
30.
L. G.
Radosevich
and
W. S.
Williams
, “
Thermal conductivity of transition metal carbides
,”
J. Am. Ceram. Soc.
53
(
1
),
30
33
(
1970
).
31.
P. G.
Klemens
, “
The scattering of low-frequency lattice waves by static imperfections
,”
Proc. Phys. Soc. Sect. A
68
(
12
),
1113
(
1955
).
32.
R.
Gurunathan
,
R.
Hanus
,
M.
Dylla
,
A.
Katre
, and
G. J.
Snyder
, “
Analytical models of phonon-point-defect scattering
,”
Phys. Rev. Appl.
13
(
3
),
034011
(
2020
).
33.
G. K.
Madsen
,
J.
Carrete
, and
M. J.
Verstraete
, “
BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients
,”
Comput. Phys. Commun.
231
,
140
145
(
2018
).
34.
A.
Sommerfeld
, “
Zur elektronentheorie der metalle
,”
Naturwissenschaften
15
(
41
),
825
832
(
1927
).
35.
H.
Smith
and
H. H.
Jensen
,
Transport Phenomena
(
Oxford Clarendon Press
,
1989
).
36.
F.
Bloch
, “
Zum elektrischen widerstandsgesetz bei tiefen temperaturen
,”
Z. Phys.
59
(
3–4
),
208
214
(
1930
).
37.
E.
Grüneisen
, “
Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur
,”
Ann. Phys.
408
(
5
),
530
540
(
1933
).
38.
D. K.
Wagner
and
A. R.
Bowers
, “
The radio-frequency size effect: A tool for the investigation of conduction electron scattering in metals
,”
Adv. Phys.
27
(
5
),
651
746
(
1978
).
39.
W. E.
Lawrence
and
J. W.
Wilkins
, “
Electron-electron scattering in the transport coefficients of simple metals
,”
Phys. Rev. B
7
(
6
),
2317
(
1973
).
40.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
(
1996
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
42.
D. C.
Langreth
and
J. P.
Perdew
, “
Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works
,”
Phys. Rev. B
21
(
12
),
5469
(
1980
).
43.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
(
2
),
515
(
2001
).
44.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
45.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
, “
First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method
,”
J. Phys.: Condens. Matter
9
(
4
),
767
(
1997
).
46.
W.
Xie
,
W.
Xiong
,
C. A.
Marianetti
, and
D.
Morgan
, “
Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches
,”
Phys. Rev. B
88
(
23
),
235128
(
2013
).
47.
B.
Beeler
,
C.
Deo
,
M.
Baskes
, and
M.
Okuniewski
, “
First principles calculations of the structure and elastic constants of α, β and γ uranium
,”
J. Nucl. Mater.
433
(
1–3
),
143
151
(
2013
).
48.
C. D.
Taylor
, “
Evaluation of first-principles techniques for obtaining materials parameters of α-uranium and the (001) α-uranium surface
,”
Phys. Rev. B
77
(
9
),
094119
(
2008
).
49.
J.-P.
Crocombette
,
F.
Jollet
,
L. T.
Nga
, and
T.
Petit
, “
Plane-wave pseudopotential study of point defects in uranium dioxide
,”
Phys. Rev. B
64
(
10
),
104107
(
2001
).
50.
A. S.
Cooper
, “
Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire
,”
Acta Crystallogr.
15
(
6
),
578
582
(
1962
).
51.
T.
Le Bihan
,
S.
Heathman
,
M.
Idiri
,
G. H.
Lander
,
J. M.
Wills
,
A. C.
Lawson
, and
A.
Lindbaum
, “
Structural behavior of α-uranium with pressures to 100 GPa
,”
Phys. Rev. B
67
(
13
),
134102
(
2003
).
52.
W. P.
Crummett
,
H. G.
Smith
,
R. M.
Nicklow
, and
N.
Wakabayashi
, “
Lattice dynamics of α-uranium
,”
Phys. Rev. B
19
(
12
),
6028
(
1979
).
53.
M. E.
Manley
,
G. H.
Lander
,
H.
Sinn
,
A.
Alatas
,
W. L.
Hults
,
R. J.
McQueeney
,
J. L.
Smith
, and
J.
Willit
, “
Phonon dispersion in uranium measured using inelastic x-ray scattering
,”
Phys. Rev. B
67
(
5
),
052302
(
2003
).
54.
M. E.
Manley
,
B.
Fultz
,
R. J.
McQueeney
,
C. M.
Brown
,
W. L.
Hults
,
J. L.
Smith
,
D. J.
Thoma
,
R.
Osborn
, and
J. L.
Robertson
, “
Large harmonic softening of the phonon density of states of uranium
,”
Phys. Rev. Lett.
86
(
14
),
3076
(
2001
).
55.
J.
Bouchet
, “
Lattice dynamics of α uranium
,”
Phys. Rev. B
77
(
2
),
024113
(
2008
).
56.
J.
Yang
,
T.
Gao
,
B.
Liu
,
G.
Sun
, and
B.
Chen
, “
Ab initio investigations of electron correlation effect and phonon dynamics of orthorhombic uranium
,”
Phys. Status Solidi B
252
(
3
),
521
531
(
2015
).
57.
Y.
Baer
and
J. K.
Lang
, “
High-energy spectroscopic study of the occupied and unoccupied 5f and valence states in Th and U metals
,”
Phys. Rev. B
21
(
6
),
2060
(
1980
).
58.
A. S.
Antropov
,
K. S.
Fidanyan
, and
V. V.
Stegailov
, “
Phonon density of states for solid uranium: Accuracy of the embedded atom model classical interatomic potential
,”
J. Phys.: Conf. Ser.
946
(
1
),
012094
(
2018
).
59.
H.-S.
Kim
,
Z. M.
Gibbs
,
Y.
Tang
,
H.
Wang
, and
G. J.
Snyder
, “
Characterization of Lorenz number with Seebeck coefficient measurement
,”
APL Mater.
3
(
4
),
041506
(
2015
).
60.
G. S.
Kumar
,
G.
Prasad
, and
R. O.
Pohl
, “
Experimental determinations of the Lorenz number
,”
J. Mater. Sci.
28
(
16
),
4261
4272
(
1993
).
61.
C.
Kittel
,
P.
McEuen
, and
P.
McEuen
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1996
), Vol. 8.
62.
V. O.
Eriksen
and
W.
Halg
, “
The thermal conductivity and electrical resistivity of uranium
,”
J. Nucl. Energy
1
,
232
233
(
1955
).
63.
D. A.
Howl
, “
The thermal conductivity of springfields adjusted uranium in the temperature range 160–620 °C
,”
J. Nucl. Mater.
19
(
1
),
9
14
(
1966
).
64.
G. J.
Pearson
,
P. O.
Davey
, and
G. C.
Danielson
, “
Thermal conductivity of nickel and uranium
,”
Proc. Iowa Acad. Sci.
64
(
1
),
461
465
(
1957
).
65.
H. E.
Flotow
,
H. R.
Lohr
,
B. M.
Abraham
, and
D. W.
Osborne
, “
The heat capacity and thermodynamic functions of β-uranium hydride from 5 to 350 K
,”
J. Am. Chem. Soc.
81
(
14
),
3529
3533
(
1959
).
66.
Y.
Wang
,
Z.
Lu
, and
X.
Ruan
, “
First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering
,”
J. Appl. Phys.
119
(
22
),
225109
(
2016
).
67.
B. W.
Beeler
,
Atomistic Simulations of Intrinsic and Extrinsic Point Defects in Uranium
(
Georgia Institute of Technology
,
2011
).
68.
G.-Y.
Huang
and
B. D.
Wirth
, “
First-principles study of diffusion of interstitial and vacancy in α U-Zr
,”
J. Phys.: Condens. Matter
23
(
20
),
205402
(
2011
).
You do not currently have access to this content.