We investigate experimentally the effects of strain on the injection of 180° domain walls (DWs) from a nucleation pad into magnetic nanowires, as typically used for DW-based sensors. In our study, the strain, generated by substrate bending, induces in the material a uniaxial anisotropy due to magnetoelastic coupling. To compare the strain effects, Co40Fe40B20, Ni, and Ni82Fe18 samples with in-plane magnetization and different magnetoelastic coupling are deposited. In these samples, we measure the magnetic field required for the injection of a DW, by imaging using differential contrast in a magneto-optical Kerr microscope. We find that strain increases the DW injection field and that the switching mechanism depends strongly on the strain direction. We observe that low magnetic anisotropy facilitates the creation of a domain wall at the junction between the pad and the wire, whereas a strain-induced magnetic easy axis significantly increases the coercive field of the nucleation pad. Moreover, we find that these effects of strain-induced anisotropy can be counteracted by an additional magnetic uniaxial anisotropy perpendicular to the strain-induced easy axis. We perform micromagnetic simulations to support the interpretation of our experimental findings showing that the above described observations can be explained by the effective anisotropy in the device. The anisotropy influences the switching mechanism in the nucleation pad as well as the pinning of the DW at the wire entrance. As the DW injection is a key operation for sensor performances, the observations show that strain is imposing a lower limit for the sensor field operating window.

1.
M.
Kläui
, “
Head-to-head domain walls in magnetic nanostructures
,”
J. Phys.: Condens. Matter
20
,
313001
(
2008
).
2.
R.
Spain
, “
Domain tip propagation logic
,”
IEEE Trans. Magn.
2
,
347
351
(
1966
).
3.
D. A.
Allwood
,
G.
Xiong
,
C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R.
Cowburn
, “
Magnetic domain-wall logic
,”
Science
309
,
1688
1692
(
2005
).
4.
S. S.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
,
190
194
(
2008
).
5.
D.
Atkinson
,
D.
Eastwood
, and
L.
Bogart
, “
Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept
,”
Appl. Phys. Lett.
92
,
022510
(
2008
).
6.
L.
Jogschies
,
D.
Klaas
,
R.
Kruppe
,
J.
Rittinger
,
P.
Taptimthong
,
A.
Wienecke
,
L.
Rissing
, and
M. C.
Wurz
, “
Recent developments of magnetoresistive sensors for industrial applications
,”
Sensors
15
,
28665
28689
(
2015
).
7.
P.
Vavassori
,
V.
Metlushko
,
B.
Ilic
,
M.
Gobbi
,
M.
Donolato
,
M.
Cantoni
, and
R.
Bertacco
, “
Domain wall displacement in Py square ring for single nanometric magnetic bead detection
,”
Appl. Phys. Lett.
93
,
203502
(
2008
).
8.
M.
Donolato
,
P.
Vavassori
,
M.
Gobbi
,
M.
Deryabina
,
M. F.
Hansen
,
V.
Metlushko
,
B.
Ilic
,
M.
Cantoni
,
D.
Petti
,
S.
Brivio
et al., “
On-chip manipulation of protein-coated magnetic beads via domain-wall conduits
,”
Adv. Mater.
22
,
2706
2710
(
2010
).
9.
E.
Rapoport
and
G. S.
Beach
, “
Dynamics of superparamagnetic microbead transport along magnetic nanotracks by magnetic domain walls
,”
Appl. Phys. Lett.
100
,
082401
(
2012
).
10.
M.
Diegel
,
R.
Mattheis
, and
E.
Halder
, “
Multiturn counter using movement and storage of 180 magnetic domain walls
,”
Sens. Lett.
5
,
118
122
(
2007
).
11.
R.
Mattheis
,
S.
Glathe
,
M.
Diegel
, and
U.
Hübner
, “
Concepts and steps for the realization of a new domain wall based giant magnetoresistance nanowire device: From the available 24 multiturn counter to a 212 turn counter
,”
J. Appl. Phys.
111
,
113920
(
2012
).
12.
B.
Borie
,
J.
Wahrhusen
,
H.
Grimm
, and
M.
Kläui
, “
Geometrically enhanced closed-loop multi-turn sensor devices that enable reliable magnetic domain wall motion
,”
Appl. Phys. Lett.
111
,
242402
(
2017
).
13.
B.
Borie
,
A.
Kehlberger
,
J.
Wahrhusen
,
H.
Grimm
, and
M.
Kläui
, “
Geometrical dependence of domain-wall propagation and nucleation fields in magnetic-domain-wall sensors
,”
Phys. Rev. Appl.
8
,
024017
(
2017
).
14.
E.
Martinez
,
L.
Lopez-Diaz
,
O.
Alejos
,
L.
Torres
, and
C.
Tristan
, “
Thermal effects on domain wall depinning from a single notch
,”
Phys. Rev. Lett.
98
,
267202
(
2007
).
15.
E.
Martinez
,
L.
Lopez-Diaz
,
O.
Alejos
,
L.
Torres
, and
M.
Carpentieri
, “
Domain-wall dynamics driven by short pulses along thin ferromagnetic strips: Micromagnetic simulations and analytical description
,”
Phys. Rev. B
79
,
094430
(
2009
).
16.
F.
Garcia-Sanchez
,
A.
Kakay
,
R.
Hertel
, and
P.
Asselin
, “
Depinning of transverse domain walls from notches in magnetostatically coupled nanostrips
,”
Appl. Phys. Express
4
,
033001
(
2011
).
17.
D.-Q.
Hoang
,
X.-H.
Cao
,
H.-T.
Nguyen
, and
V.-A.
Dao
, “
Creation and propagation of a single magnetic domain wall in 2D nanotraps with a square injection pad
,”
Nanotechnology
32
,
095703
(
2020
).
18.
W.
Van Driel
,
J.
Janssen
,
G.
Zhang
,
D.
Yang
, and
L.
Ernst
, “
Packaging induced die stresses-effect of chip anisotropy and time-dependent behavior of a molding compound
,”
J. Electron. Packag.
125
,
520
526
(
2003
).
19.
E. W.
Lee
, “
Magnetostriction and magnetomechanical effects
,”
Rep. Prog. Phys.
18
,
184
(
1955
).
20.
S.
Finizio
,
M.
Foerster
,
M.
Buzzi
,
B.
Krüger
,
M.
Jourdan
,
C. A.
Vaz
,
J.
Hockel
,
T.
Miyawaki
,
A.
Tkach
,
S.
Valencia
et al., “
Magnetic anisotropy engineering in thin film Ni nanostructures by magnetoelastic coupling
,”
Phys. Rev. Appl.
1
,
021001
(
2014
).
21.
N.
Lei
,
T.
Devolder
,
G.
Agnus
,
P.
Aubert
,
L.
Daniel
,
J.-V.
Kim
,
W.
Zhao
,
T.
Trypiniotis
,
R. P.
Cowburn
,
C.
Chappert
,
D.
Ravelosona
, and
P.
Lecoeur
, “
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
,”
Nat. Commun.
4
,
1378
(
2013
).
22.
R.
Cowburn
,
D.
Allwood
,
G.
Xiong
, and
M.
Cooke
, “
Domain wall injection and propagation in planar permalloy nanowires
,”
J. Appl. Phys.
91
,
6949
6951
(
2002
).
23.
K.
Shigeto
,
T.
Shinjo
, and
T.
Ono
, “
Injection of a magnetic domain wall into a submicron magnetic wire
,”
Appl. Phys. Lett.
75
,
2815
2817
(
1999
).
24.
H.
Zhou
,
S.
Shi
,
D.
Nian
,
S.
Cui
,
J.
Luo
,
Y.
Qiu
,
H.
Yang
,
M.
Zhu
, and
G.
Yu
, “
Voltage control of magnetic domain wall injection into strain-mediated multiferroic heterostructures
,”
Nanoscale
12
,
14479
14486
(
2020
).
25.
G.
Choe
and
B.
Megdal
, “
High precision magnetostriction measurement employing the BH Looper bending method
,”
IEEE Trans. Magn.
35
,
3959
3961
(
1999
).
26.
C.
Hill
,
W.
Hendren
,
R.
Bowman
,
P.
McGeehin
,
M.
Gubbins
, and
V.
Venugopal
, “
Whole wafer magnetostriction metrology for magnetic films and multilayers
,”
Meas. Sci. Technol.
24
,
045601
(
2013
).
27.
A.
Raghunathan
,
J. E.
Snyder
, and
D.
Jiles
, “
Comparison of alternative techniques for characterizing magnetostriction and inverse magnetostriction in magnetic thin films
,”
IEEE Trans. Magn.
45
,
3269
3273
(
2009
).
28.
R.-C.
Peng
,
J.-M.
Hu
,
K.
Momeni
,
J.-J.
Wang
,
L.-Q.
Chen
, and
C.-W.
Nan
, “
Fast 180 magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage
,”
Sci. Rep.
6
,
1
9
(
2016
).
29.
E.
Klokholm
and
J.
Aboaf
, “
The saturation magnetostriction of permalloy films
,”
J. Appl. Phys.
52
,
2474
2476
(
1981
).
30.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
(
John Wiley & Sons
,
2011
), Chap. 8, pp. 243–257.
31.
M.
Weiler
,
A.
Brandlmaier
,
S.
Geprägs
,
M.
Althammer
,
M.
Opel
,
C.
Bihler
,
H.
Huebl
,
M. S.
Brandt
,
R.
Gross
, and
S. T.
Gönnenwein
, “
Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature
,”
New J. Phys.
11
,
013021
(
2009
).
32.
A.
Bur
,
T.
Wu
,
J.
Hockel
,
C.-J.
Hsu
,
H. K.
Kim
,
T.-K.
Chung
,
K.
Wong
,
K. L.
Wang
, and
G. P.
Carman
, “
Strain-induced magnetization change in patterned ferromagnetic nickel nanostructures
,”
J. Appl. Phys.
109
,
123903
(
2011
).
33.
Y.
Zhang
,
X.
Fan
,
W.
Wang
,
X.
Kou
,
R.
Cao
,
X.
Chen
,
C.
Ni
,
L.
Pan
, and
J. Q.
Xiao
, “
Study and tailoring spin dynamic properties of CoFeB during rapid thermal annealing
,”
Appl. Phys. Lett.
98
,
042506
(
2011
).
34.
G. V.
Swamy
,
R.
Rakshit
,
R.
Pant
, and
G.
Basheed
, “
Origin of ‘in-plane’ and ‘out-of-plane’ magnetic anisotropies in as-deposited and annealed CoFeB ferromagnetic thin films
,”
J. Appl. Phys.
117
,
17A312
(
2015
).
35.
A.
Deka
,
B.
Rana
,
R.
Anami
,
K.
Miura
,
H.
Takahashi
,
Y.
Otani
, and
Y.
Fukuma
, “
Electric-field control of interfacial in-plane magnetic anisotropy in CoFeB/MgO junctions
,”
Phys. Rev. B
101
,
174405
(
2020
).
36.
B.
Cui
,
C.
Song
,
Y.
Wang
,
W.
Yan
,
F.
Zeng
, and
F.
Pan
, “
Tuning of uniaxial magnetic anisotropy in amorphous CoFeB films
,”
J. Phys.: Condens. Matter
25
,
106003
(
2013
).
37.
O.
Thomas
,
Q.
Shen
,
P.
Schieffer
,
N.
Tournerie
, and
B.
Lépine
, “
Interplay between anisotropic strain relaxation and uniaxial interface magnetic anisotropy in epitaxial Fe films on (001) GaAs
,”
Phys. Rev. Lett.
90
,
017205
(
2003
).
38.
D.
McGrouther
,
S.
McVitie
,
J.
Chapman
, and
A.
Gentils
, “
Controlled domain wall injection into ferromagnetic nanowires from an optimized pad geometry
,”
Appl. Phys. Lett.
91
,
022506
(
2007
).
39.
J.
Wang
, “
Mechanical control of magnetic order: From phase transition to skyrmions
,”
Annu. Rev. Mater. Res.
49
,
361
388
(
2019
).
40.
M.-Y.
Im
,
L.
Bocklage
,
P.
Fischer
, and
G.
Meier
, “
Direct observation of stochastic domain-wall depinning in magnetic nanowires
,”
Phys. Rev. Lett.
102
,
147204
(
2009
).
41.
L.
Bogart
,
D.
Atkinson
,
K.
O’Shea
,
D.
McGrouther
, and
S.
McVitie
, “
Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires
,”
Phys. Rev. B
79
,
054414
(
2009
).
42.
D.
Backes
,
C.
Schieback
,
M.
Kläui
,
F.
Junginger
,
H.
Ehrke
,
P.
Nielaba
,
U.
Rüdiger
,
L. J.
Heyderman
,
C.-S.
Chen
,
T.
Kasama
et al., “
Transverse domain walls in nanoconstrictions
,”
Appl. Phys. Lett.
91
,
112502
(
2007
).
43.
A.
Brandlmaier
,
S.
Geprägs
,
M.
Weiler
,
A.
Boger
,
M.
Opel
,
H.
Huebl
,
C.
Bihler
,
M. S.
Brandt
,
B.
Botters
,
D.
Grundler
et al., “
In situ manipulation of magnetic anisotropy in magnetite thin films
,”
Phys. Rev. B
77
,
104445
(
2008
).
44.
R. D.
McMichael
and
M. J.
Donahue
, “
Head to head domain wall structures in thin magnetic strips
,”
IEEE Trans. Magn.
33
,
4167
4169
(
1997
).
45.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
46.
R.
Yanes
,
F.
Garcia-Sanchez
,
R.
Luis
,
E.
Martinez
,
V.
Raposo
,
L.
Torres
, and
L.
Lopez-Diaz
, “
Skyrmion motion induced by voltage-controlled in-plane strain gradients
,”
Appl. Phys. Lett.
115
,
132401
(
2019
).
47.
A.
Hubert
and
R.
Schäfer
,
Magnetic Domains: The Analysis of Magnetic Microstructures
(
Springer Science & Business Media
,
2008
).
48.
S. A.
Mollick
,
R.
Singh
,
M.
Kumar
,
S.
Bhattacharyya
, and
T.
Som
, “
Strong uniaxial magnetic anisotropy in Co films on highly ordered grating-like nanopatterned Ge surfaces
,”
Nanotechnology
29
,
125302
(
2018
).
49.
A.
Kumar
,
S.
Fähler
,
H.
Schloerb
,
K.
Leistner
, and
L.
Schultz
, “
Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates
,”
Phys. Rev. B
73
,
064421
(
2006
).
You do not currently have access to this content.