Optical trapping has become an important tool in a wide range of fields. While these traps are most commonly realized using optical tweezers, dual-beam optical traps offer specific advantages for certain experiments. It is commonly assumed that a particle will become trapped midway between the focal points of the two beams. However, this is not always the case. We perform a theoretical and experimental investigation of trapping positions of weakly absorbing, spherical particles in a dual-beam optical trap. We evaluate the effect of offsetting the beams in the direction of propagation and identify four regimes with distinct trapping behavior. The effect of an offset perpendicular to the propagation direction and an imbalance in power between the two beams is also considered. Experiments utilize an aqueous aerosol particle whose size can be readily controlled and monitored over hundreds of nanometers. As such, it serves as an excellent probe of the optical trap. We demonstrate that it is possible to fit the evolution of the particle trapping position in order to determine the position of the particle relative to the focal point of each beam. The results presented here provide key insights into the workings of dual-beam optical traps, elucidating more complex behaviors than previously known.

1.
A.
Ashkin
, “
Acceleration and trapping of particles by radiation pressure
,”
Phys. Rev. Lett.
24
,
156
159
(
1970
).
2.
C. A.
Campugan
,
K. R.
Dunning
, and
K.
Dholakia
, “
Optical manipulation: A step change for biomedical science
,”
Contemp. Phys.
61
,
277
294
(
2020
).
3.
Z.
Gong
,
Y.-L.
Pan
, and
C.
Wang
, “
Optical configurations for photophoretic trap of single particles in air
,”
Rev. Sci. Instrum.
87
,
1
10
(
2016
).
4.
U. K.
Krieger
,
C.
Marcolli
, and
J. P.
Reid
, “
Exploring the complexity of aerosol particle properties and processes using single particle techniques
,”
Chem. Soc. Rev.
41
,
6631
6662
(
2012
).
5.
J. E.
Molloy
and
M. J.
Padgett
, “
Lights, action: Optical tweezers
,”
Contemp. Phys.
43
,
241
258
(
2010
).
6.
A.
Ashkin
, “
Optical trapping and manipulation of small neutral particles using lasers
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
4853
4860
(
1997
).
7.
J.
Guck
,
R.
Ananthakrishnan
,
T. J.
Moon
,
C. C.
Cunningham
, and
J.
Käs
, “
The optical stretcher—A novel, noninvasive tool to manipulate biological materials
,”
Biophys. J.
81
,
767
784
(
2001
).
8.
C. P. F.
Day
,
A.
Miloserdov
,
K.
Wildish-Jones
,
E.
Pearson
, and
A. E.
Carruthers
, “
Quantifying the hygroscopic properties of cyclodextrin containing aerosol for drug delivery to the lungs
,”
Phys. Chem. Chem. Phys.
22
,
11327
11336
(
2020
).
9.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
10.
A.
Van Der Horst
,
P. D.
Van Oostrum
,
A.
Moroz
,
A.
Van Blaaderen
, and
M.
Dogterom
, “
High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers
,”
Appl. Opt.
47
,
3196
3202
(
2008
).
11.
P. R. T.
Jess
,
V.
Garcés-Chávez
,
D.
Smith
,
M.
Mazilu
,
L.
Paterson
,
A.
Riches
,
C. S.
Herrington
,
W.
Sibbett
, and
K.
Dholakia
, “
Dual beam fibre trap for Raman micro-spectroscopy of single cells
,”
Opt. Express
14
,
5779
5791
(
2006
).
12.
A.
Rafferty
,
K.
Gorkowski
,
A.
Zuend
, and
T. C.
Preston
, “
Optical deformation of single aerosol particles
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
19880
19886
(
2019
).
13.
T. B.
Lindballe
,
M. V.
Kristensen
,
A. P.
Kylling
,
D. Z.
Palima
,
J.
Glückstad
,
S. R.
Keiding
, and
H.
Stapelfeldt
, “
Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps
,”
J. Eur. Opt. Soc. Rapid Publ.
6
,
11057
(
2011
).
14.
M.
Kawano
,
J. T.
Blakely
,
R.
Gordon
, and
D.
Sinton
, “
Theory of dielectric micro-sphere dynamics in a dual-beam optical trap
,”
Opt. Express
16
,
9306
9317
(
2008
).
15.
A.
Ashkin
, “
Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime
,”
Biophys. J.
61
,
569
582
(
1992
).
16.
T. A.
Nieminen
,
G.
Knöner
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Physics of optical tweezers
,”
Methods Cell Biol.
82
,
207
236
(
2007
).
17.
G.
Roosen
, “
A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams
,”
Opt. Commun.
21
,
189
194
(
1977
).
18.
J. P.
Barton
,
D. R.
Alexander
, and
S. A.
Schaub
, “
Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam
,”
J. Appl. Phys.
66
,
4594
4602
(
1989
).
19.
K. J.
Knox
,
D. R.
Burnham
,
L. I.
McCann
,
S. L.
Murphy
,
D.
McGloin
, and
J. P.
Reid
, “
Observation of bistability of trapping position in aerosol optical tweezers
,”
J. Opt. Soc. Am. B
27
,
582
591
(
2010
).
20.
E.
Sidick
,
S. D.
Collins
, and
A.
Knoesen
, “
Trapping forces in a multiple-beam fiber-optic trap
,”
Appl. Opt.
36
,
6423
6433
(
1997
).
21.
J.
Chen
,
H.
Hu
, and
Y.
Shen
, “Multi-stability in dual-fiber optical trap,” in 2009 Symposium on Photonics and Optoelectronics (IEEE, 2009), pp. 1–4.
22.
H.
Sosa-Martínez
and
J. C.
Gutiérrez-Vega
, “
Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap
,”
J. Opt. Soc. Am. B
26
,
2109
2116
(
2009
).
23.
Y.-L.
Pan
,
A.
Kalume
,
I. C. D.
Lenton
,
T. A.
Nieminen
,
A. B.
Stilgoe
,
H.
Rubinsztein-Dunlop
,
L. A.
Beresnev
,
C.
Wang
, and
J. L.
Santarpia
, “
Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam
,”
Opt. Express
27
,
33061
33069
(
2019
).
24.
Z. J.
Li
,
S.
Li
,
H. Y.
Li
,
T.
Qu
, and
Q. C.
Shang
, “
Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams
,”
J. Opt. Soc. Am. A
38
,
616
627
(
2021
).
25.
D.
Palima
,
T. B.
Lindballe
,
M. V.
Kristensen
,
S.
Tauro
,
H.
Stapelfeldt
,
S. R.
Keiding
, and
J.
Glückstad
, “
Alternative modes for optical trapping and manipulation using counter-propagating shaped beams
,”
J. Opt.
13
,
044013
(
2011
).
26.
R.
Bowman
,
A.
Jesacher
,
G.
Thalhammer
,
G.
Gibson
,
M.
Ritsch-Marte
, and
M.
Padgett
, “
Position clamping in a holographic counterpropagating optical trap
,”
Opt. Express
19
,
9908
9914
(
2011
).
27.
P.
Kraikivski
,
B.
Pouligny
, and
R.
Dimova
, “
Implementing both short- and long-working-distance optical trappings into a commercial microscope
,”
Rev. Sci. Instrum.
77
,
113703
(
2006
).
28.
R. A.
Flynn
,
B.
Shao
,
M.
Chachisvilis
,
M.
Ozkan
, and
S. C.
Esener
, “
Counter-propagating optical trapping system for size and refractive index measurement of microparticles
,”
Biosens. Bioelectron.
21
,
1029
1036
(
2006
).
29.
L.
Rkiouak
,
M. J.
Tang
,
J. C.
Camp
,
J.
McGregor
,
I. M.
Watson
,
R. A.
Cox
,
M.
Kalberer
,
A. D.
Ward
, and
F. D.
Pope
, “
Optical trapping and Raman spectroscopy of solid particles
,”
Phys. Chem. Chem. Phys.
16
,
11426
11434
(
2014
).
30.
O.
Reich
,
G.
David
,
K.
Esat
, and
R.
Signorell
, “
Weighing picogram aerosol droplets with an optical balance
,”
Commun. Phys.
3
,
223
(
2020
).
31.
A.
Bain
,
A.
Rafferty
, and
T. C.
Preston
, “
Determining the size and refractive index of single aerosol particles using angular light scattering and Mie resonances
,”
J. Quant. Spectrosc. Radiat. Transfer
221
,
61
70
(
2018
).
32.
A.
Rafferty
and
T. C.
Preston
, “
Measuring the size and complex refractive index of an aqueous aerosol particle using electromagnetic heating and cavity-enhanced Raman scattering
,”
Phys. Chem. Chem. Phys.
20
,
17038
17047
(
2018
).
33.
G.
Gouesbet
,
B.
Maheu
, and
G.
Grehan
, “
Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation
,”
J. Opt. Soc. Am. A
5
,
1427
1443
(
1988
).
34.
G.
Gouesbet
, “
Generalized Lorenz-Mie theory and applications
,”
Part. Part. Syst. Char.
11
,
22
34
(
1994
).
35.
G.
Gouesbet
,
J. A.
Lock
, and
G.
Gréhan
, “
Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review
,”
J. Quant. Spectrosc. Radiat. Transfer
112
,
1
27
(
2011
).
36.
K. F.
Ren
,
G.
Gréhan
, and
G.
Gouesbet
, “
Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects
,”
Opt. Commun.
108
,
343
354
(
1994
).
37.
J. A.
Lock
, “
Improved Gaussian beam-scattering algorithm
,”
Appl. Opt.
34
,
559
570
(
1995
).
38.
J. P.
Barton
and
D. R.
Alexander
, “
Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam
,”
J. Appl. Phys.
66
,
2800
2802
(
1989
).
39.
T.
Čižmár
,
V.
Kollárová
,
Z.
Boucha
, and
P.
Zemánek
, “
Sub-micron particle organization by self-imaging of non-diffracting beams
,”
New J. Phys.
8
,
43
(
2006
).
40.
D. R.
Burnham
and
D.
McGloin
, “
Modeling of optical traps for aerosols
,”
J. Opt. Soc. Am. B
28
,
2856
2864
(
2011
).
41.
A.
Ashkin
and
J. M.
Dziedzic
, “
Observation of resonances in the radiation pressure on dielectric spheres
,”
Phys. Rev. Lett.
38
,
1351
1354
(
1977
).
42.
T. C.
Preston
and
J. P.
Reid
, “
Determining the size and refractive index of microspheres using the mode assignments from Mie resonances
,”
J. Opt. Soc. Am. A
32
,
2210
2217
(
2015
).
43.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Pearson
,
Boston, MA
,
2013
).
You do not currently have access to this content.