Carbon fibrous (CF) membranes were fabricated by electrospinning, thermal stabilization, and the carbonization process. The in-depth analyses of the CF membranes’ composition, structure, and microwave absorption (MA) property demonstrate that the MA performance of the membranes is strongly correlated with the C/O ratio and CF framework's microstructure. A maximum absorption value of −23.4 dB is achieved at 800 °C, and this was synergistically enhanced to −42.5 dB with the addition of graphene nanosheets (GNSs). The special multilayered membranes containing dielectric loss CNSs and CFs making the balance between excellent impedance matching and the high loss characteristic could deliver an excellent MA property. With the facile and controllable synthesis of the GNS/CF membranes, a new approach to efficiently optimize and regulate its MA behavior is now possible.

1.
F.
Shahzad
,
M.
Alhabeb
,
C. B.
Hatter
,
B.
Anasori
,
S.-M.
Hong
,
C.-M.
Koo
, and
Y.
Gogotsi
, “
Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
,”
Science
353
(
6304
),
1137
1140
(
2016
).
2.
I.
Abdalla
,
A.
Salim
,
M.
Zhu
,
J.
Yu
,
Z.
Li
, and
B.
Ding
, “
Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency
,”
ACS Appl. Mater. Interfaces
10
(
51
),
44561
44569
(
2018
).
3.
J.-C.
Shu
,
W.-Q.
Cao
, and
M.-S.
Cao
, “
Diverse metal-organic framework architectures for electromagnetic absorbers and shielding
,”
Adv. Funct. Mater.
31
(
23
),
2100470
(
2021
).
4.
K.
Huang
,
M.
Chen
,
G.
He
,
X.
Hu
,
W.
He
,
X.
Zhou
,
Y.
Huang
, and
Z.
Liu
, “
Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling
,”
Carbon
157
,
466
477
(
2020
).
5.
Z.
Gao
,
D.
Lan
,
L.
Zhang
, and
H.
Wu
, “
Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption
,”
Adv. Funct. Mater.
2106677
(
2021
).
6.
Y.
Zhang
,
Y.
Huang
,
H.
Chen
,
Z.
Huang
,
Y.
Yang
,
P.
Xiao
,
Y.
Zhou
, and
Y.
Chen
, “
Composition and structure control of ultralight graphene foam for high-performance microwave absorption
,”
Carbon
105
,
438
447
(
2016
).
7.
J.
Chen
,
J.
Zheng
,
F.
Wang
,
Q.
Huang
, and
G.
Ji
, “
Carbon fibers embedded with Fe-III-MOF-5-derived composites for enhanced microwave absorption
,”
Carbon
174
,
509
517
(
2021
).
8.
M.
He
,
P.
Xu
,
Y.
Zhang
,
K.
Liu
, and
X.
Yang
, “
Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance
,”
Chem. Eng. J.
388
,
124255
(
2020
).
9.
S.
Demiroğlu Mustafov
,
A. K.
Mohanty
,
M.
Misra
, and
M-Ö
Seydibeyoğlu
, “
Fabrication of conductive lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes
,”
Carbon
147
,
262
275
(
2019
).
10.
M.-M.
Titirici
,
R. J.
White
,
N.
Brun
,
V. L.
Budarin
,
D. S.
Su
,
F.
del Monte
,
J. H.
Clark
, and
M. J.
MacLachlan
, “
Sustainable carbon materials
,”
Chem. Soc. Rev.
44
,
250
290
(
2015
).
11.
A. J.
Ragauskas
,
G. T.
Beckham
,
M. J.
Biddy
,
R.
Chandra
,
F.
Chen
,
M. F.
Davis
,
B.-H.
Davison
,
R. A.
Dixon
,
P.
Gilna
, and
M.
Keller
, “
Lignin valorization: Improving lignin processing in the biorefinery
,”
Science
344
,
1246843
(
2014
).
12.
Z.
Dai
,
Q.
Cao
,
H.
Liu
,
X.
Shi
,
X.
Wang
,
H.
Li
,
Y.
Han
,
Y.
Li
, and
J.
Zhou
, “
Biomimetic biomass-Bsed carbon fibers: Effect of covalent-Bnd connection on performance of derived carbon fibers
,”
ACS Sustainable Chem. Eng.
7
,
16084
16093
(
2019
).
13.
H.
Liu
,
Z.
Dai
,
Q.
Cao
,
X.
Shi
,
X.
Wang
,
H.
Li
,
Y.
Han
,
Y.
Li
, and
J.
Zhou
, “
Lignin/polyacrylonitrile carbon fibers: The effect of fractionation and purification on properties of derived carbon fibers
,”
ACS Sustainable Chem. Eng.
6
,
8554
8562
(
2018
).
14.
H.
Zhen
,
H.
Wang
, and
X.
Xu
, “
Preparation of porous carbon nanofibers with remarkable microwave absorption performance through electrospinning
,”
Mater. Lett.
249
,
210
213
(
2019
).
15.
B.
Dai
,
J.
Li
,
W.
Wang
,
X.
Liu
,
Y.
Qi
, and
Y.
Qi
, “
Carbon fibers with eddy current loss characteristics exhibit different microwave absorption properties in different graphitization states
,”
Mater. Lett.
281
,
128667
(
2020
).
16.
M.
Qin
,
L.
Zhang
,
X.
Zhao
, and
H.
Wu
, “
Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber
,”
Adv. Funct. Mater.
31
,
2103436
(
2021
).
17.
M. A.
Kazakova
,
N. V.
Semikolenova
,
E. Y.
Korovin
,
V. A.
Zhuravlev
,
A. G.
Selyutin
,
D. A.
Velikanov
,
S. I.
Moseenkov
,
A. S.
Andreev
,
O. B.
Lapina
,
V. I.
Suslyaev
,
M. A.
Matsko
,
V. A.
Zakharov
, and
J.-B.
Lacaillerie
, “
Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the effectiveness of electromagnetic shielding by varying the components ratio
,”
Compos. Sci. Technol.
207
,
108731
(
2021
).
18.
S. P.
Pawar
,
G.
Melo
, and
U.
Sundararaj
, “
Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: Simultaneous enhancement in charge storage and microwave absorption
,”
Compos. Sci. Technol.
183
,
107802
(
2019
).
19.
N.
Zhang
,
Y.
Huang
, and
M.
Wang
, “
3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption
,”
Compos. Part B Eng.
136
,
135
142
(
2018
).
20.
X.-J.
Zhang
,
G.-S.
Wang
,
W.-Q.
Cao
,
Y.-Z.
Wei
,
J.-F.
Liang
,
L.
Guo
, and
M.-S.
Cao
, “
Enhanced microwave absorption property of reduced grapheme oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride
,”
ACS Appl. Mater. Interfaces
6
(
10
),
7471
7478
(
2014
).
21.
X.
Wang
,
X.
Li
,
J.
Cui
,
L.
Huang
, and
Y.
Yuan
, “
A sustainable strategy to fabricate porous flower-like magnetic carbon composites for enhanced microwave absorption
,”
J. Appl. Phys.
129
,
244101
(
2021
).

Supplementary Material

You do not currently have access to this content.