We investigate the electronic and magnetic properties of Ca2CrIrO6 and Ca2FeIrO6 by means of density functional theory. These materials belong to a family of recently synthesized Ca2CrOsO6 whose properties show possible applications in a room temperature regime. Upon replacement of Os by Ir in Ca2CrOsO6, we found the system to exhibit a stable ferrimagnetic configuration with a bandgap of 0.25 eV and an effective magnetic moment of 2.58μB per unit cell. Furthermore, when chemical doping is considered by replacing Cr with Fe and Os with Ir, the material retains the insulating state but with a reduced bandgap of 0.13 eV and large increment in the effective magnetic moment of 6.68μB per unit cell. These observed behaviors are noted to be the consequence of the cooperative effect of spin–orbit coupling; Coulomb correlations from Cr-3d, Fe-3d, and Ir-5d electrons; and the crystal field effect of the materials. These calculations suggest that by chemical tuning, one can manipulate the bandgap and their effective magnetic moment, which may help in material fabrication for device applications. To check further the suitability and applicability of Ca2CrIrO6 and Ca2FeIrO6 at higher temperatures, we estimate the Curie temperature (TC) by calculating the spin–exchange coupling. We found that our findings are in a valid TC trend similar to other perovskites. Our findings are expected to be useful in experimental synthesis and transport measurement for potential applications in modern technological devices.

1.
K.
Samanta
and
T. S.
Dasgupta
,
J. Phys. Soc. Jpn.
87
,
041007
(
2018
).
2.
R. A.
de Groot
,
F. M.
Mueller
,
P. G.
Van Engen
, and
K. H. J.
Buschow
,
Phys. Rev. Lett.
50
,
2024
(
1983
).
3.
K. W.
Lee
and
W. E.
Pickett
,
Phys. Rev. B
77
,
115101
(
2008
).
4.
M. P.
Ghimire
,
L. H.
Wu
, and
X.
Hu
,
Phys. Rev. B
93
,
134421
(
2016
).
5.
Y. P.
Liu
,
H. R.
Fuh
, and
Y. K.
Wang
,
Comput. Mater. Sci.
92
,
63
(
2014
).
6.
R.
Morrow
,
K.
Samanta
,
T.
Saha-Dasgupta
,
J.
Xiong
,
J. W.
Freeland
,
D.
Haskel
, and
P. M.
Woodward
,
Chem. Mater.
28
,
3666
(
2016
).
7.
M. T.
Anderson
,
K. B.
Greenwood
,
G. A.
Taylor
, and
K. R.
Poeppelmeier
,
Prog. Solid State Chem.
22
,
197
(
1993
).
8.
S.
Vasala
and
M.
Karppinen
,
Prog. Solid State Chem.
43
,
1
(
2015
).
9.
B.
Mali
,
H. S.
Nair
,
T. W.
Heitmann
,
H.
Nhalil
,
D.
Antonio
,
K.
Gofryk
,
S. R.
Bhandari
,
M. P.
Ghimire
, and
S.
Elizabeth
,
Phys. Rev. B
102
,
014418
(
2020
).
10.
K. K.
Wolff
,
S.
Agrestini
,
A.
Tanaka
,
M.
Jansen
, and
L. H.
Tjeng
,
Z. Anorg. Allg. Chem.
643
,
2095
(
2017
).
11.
M.
Arejdal
,
L.
Bahmad
,
A.
Abbassi
, and
A.
Benyoussef
,
Physica A
437
,
375
(
2015
).
12.
A. C.
Tian
,
H. C.
Wibowo
,
Z.
Loye
, and
M. H.
Whangbo
,
Inorg. Chem.
50
,
4142
(
2011
).
13.
K. W.
Lee
and
W. E.
Pickett
,
Phys. Rev. B
77
,
115101
(
2008
).
14.
S.
Idrissi
,
R.
Khalladi
,
S.
Mtougui
,
S.
Ziti
,
H.
Labrim
,
I.
El Housni
,
N.
El Mekkaoui
, and
L.
Bahmad
,
Physica A
523
,
714
(
2019
).
15.
H. L.
Feng
,
M.
Arai
,
Y.
Matsushita
,
Y.
Tsujimoto
,
Y.
Guo
,
C. I.
Sathish
,
X.
Wang
,
Y. H.
Yuan
,
M.
Tanaka
, and
K.
Yamaura
,
J. Am. Chem. Soc.
136
,
3326
(
2014
).
16.
H.-S.
Lu
and
G.-Y.
Guo
,
Phys. Rev. B
100
,
054443
(
2019
).
17.
A.
Hossain
,
P.
Bandyopadhyay
, and
S.
Roy
,
J. Alloys Compd.
740
,
414
(
2018
).
18.
Y.
Yuan
,
H. L.
Feng
,
M. P.
Ghimire
,
Y.
Matsushita
,
Y.
Tsujimoto
,
J.
He
,
M.
Tanaka
,
Y.
Katsuya
, and
K.
Yamaura
,
Inorg. Chem.
54
,
3422
(
2015
).
19.
W.
Song
,
E.
Zhao
,
J.
Meng
, and
Z.
Wu
,
J. Chem. Phys.
130
,
114707
(
2009
).
20.
M.
El Yadari
,
L.
Bahmad
,
A.
El Kenz
, and
A.
Benyoussef
,
J. Alloys Compd.
579
,
86
(
2013
).
21.
S.
Sidi Ahmed
,
M.
Boujnah
,
L.
Bahmad
,
A.
Benyoussef
, and
A.
El Kenz
,
Chem. Phys. Lett.
685
,
191
(
2017
).
22.
D.
Pesin
and
L.
Balents
,
Nat. Phys.
6
,
376
(
2010
).
23.
M. P.
Ghimire
,
R. K.
Thapa
,
D. P.
Rai Sandeep
,
T. P.
Sinha
, and
X.
Hu
,
J. Appl. Phys.
117
,
063903
(
2015
).
24.
B. J.
Kim
,
H.
Jin
,
S. J.
Moon
,
J.-Y.
Kim
,
B.-G.
Park
,
C. S.
Leem
,
J.
Yu
,
T. W.
Noh
,
C.
Kim
,
S.-J.
Oh
,
J.-H.
Park
,
V.
Durairaj
,
G.
Cao
, and
E.
Rotenberg
,
Phys. Rev. Lett.
101
,
076402
(
2008
).
25.
Y.
Okada
,
D.
Walkup
,
H.
Lin
,
C.
Dhital
,
T.-R.
Chang
,
S.
Khadka
,
W.
Zhou
,
H.-T.
Jeng
,
M.
Paranjape
,
A.
Bansil
,
Z.
Wang
,
S. D.
Wilson
, and
V.
Madhavan
,
Nat. Mater.
12
,
707
(
2013
).
26.
X.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
,
Phys. Rev. B
83
,
205101
(
2011
).
27.
S. J.
Mugavero III
,
A. H.
Fox
,
M. D.
Smith
, and
H.-C.
zur Loye
,
J. Solid State Chem.
183
,
465
(
2010
).
28.
P. C.
Rout
and
V.
Srinivasan
,
Phys. Rev. B
100
,
245136
(
2019
).
29.
M. P.
Ghimire
and
X.
Hu
,
Mater. Res. Express
3
,
106107
(
2016
).
30.
A.
Nid-bahami
,
A.
El Kenz
,
A.
Benyoussef
,
L.
Bahmad
,
M.
Hamedoun
, and
H.
El Moussaoui
,
J. Magn. Magn. Mater.
417
,
258
(
2016
).
31.
R.
Morrow
,
J. R.
Soliz
,
A. J.
Hauser
,
J. C.
Gallagher
,
M. A.
Susner
,
M. D.
Sumption
,
A. A.
Aczel
,
J.
Yan
,
F.
Yang
, and
P. M.
Woodward
,
J. Solid State Chem.
238
,
46
(
2016
).
32.
S. R.
Bhandari
,
D. K.
Yadav
,
B. P.
Belbase
,
M.
Zeeshan
,
B.
Sadhukhan
,
D. P.
Rai
,
R. K.
Thapa
,
G. C.
Kaphle
, and
M. P.
Ghimire
,
RSC Adv.
10
,
16179
(
2020
).
33.
H. P. S.
Correa
,
I. P.
Cavalcante
,
D. O.
Souza
,
E. Z.
Santos
,
M. T. D.
Orlando
,
H.
Belich
,
F. J.
Silva
,
E. F.
Medeiro
,
J. M.
Pires
,
J. L.
Passamai
,
L. G.
Martinez
, and
L.
Rossi
,
Ceramica
56
,
193
(
2010
).
34.
D.
Serrate
,
J. M. D.
Teresa
, and
M. R.
Ibarra
,
J. Phys.: Condens. Matter
19
,
023201
(
2007
).
35.
P.
Blaha
,
K.
Schwarz
,
G. K. H.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Vienna, 2001), ISBN: 3-9501031-1-2.
36.
K.
Koepernik
and
H.
Eschrig
,
Phys. Rev. B
59
,
1743
(
1999
).
37.
See https://www.FPLO.de for detail information about the full-potential local-orbital minimum-basis code.
38.
S. R.
Bhandari
,
R. K.
Thapa
, and
M. P.
Ghimire
,
J. Nepal Phys. Soc.
3
,
89
(
2015
).
39.
M.
Rafique
,
S.
Young
, and
H.
Tan
,
Physica E
88
,
115
(
2017
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
(
1995
).
42.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
43.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
Hoboken, NJ
,
2005
).
44.
D.
Serrate
,
J. M.
De Teresa
, and
M. R.
Ibarra
,
J. Phys.: Condens. Matter
19
,
023201
(
2007
).
45.
A.
Arulraj
,
K.
Ramesha
,
J.
Gopalkrishna
, and
C. N. N.
Rao
,
J. Solid State Chem.
155
,
233
(
2000
).
46.
N.
Zu
,
R.
Li
, and
R.
Ai
,
J. Magn. Magn. Mater.
467
,
145
(
2018
).
47.
H.
Kato
,
T.
Okuda
,
Y.
Okimoto
,
Y.
Oikawa
,
T.
Kamiyama
, and
Y.
Tokura
,
Phys. Rev. B
69
,
184412
(
2004
).
48.
Y.
Krockenberger
,
K.
Mogare
,
M.
Reehuis
,
M.
Tovar
,
M.
Jansen
,
G.
Vaitheeswaran
,
V.
Kanchana
,
F.
Bultmark
,
A.
Delin
,
F.
Wilhelm
,
A.
Rogalev
,
A.
Winkler
, and
L.
Alff
,
Phys. Rev. B
75
,
020404
(
2007
).
49.
T. K.
Mandal
,
C.
Felser
,
M.
Greenblatt
, and
J.
Kubler
,
Phys. Rev. B
78
,
134431
(
2008
).
You do not currently have access to this content.