This article reports on the characterization of a laboratory model 100 A-class hollow cathode with a sintered lanthanum hexaboride (LaB6) emitter for high-power Hall thrusters. The cathode has been fired up to 70 A with xenon as working gas. The cathode architecture, test setup, ignition procedure, and power consumption are described first. The second part of this contribution comments on the current–voltage characteristics and the discharge modes obtained for discharge currents in the 30–70 A range and flow rates in the 15–30 SCCM range. The cathode operates in a spot mode at high discharge currents and in a plume mode with large oscillations at low currents and low gas flow rate. Spectral analysis shows that most frequencies reside in the 10–200 kHz range with flat and sharp distributions in plume and spot modes, respectively. Finally, we present electron temperatures and densities measured in the cathode plasma plume by means of incoherent Thomson scattering. The two quantities decrease along the axis. The density is large (up to 1019m3) and increases with both the ion current and the gas flow rate. The electron temperature increases with the current and decreases with the gas flow rate. The temperature remains relatively low (<1.5 eV) in spite of large currents and applied powers.

1.
S.
Mazouffre
, “
Electric propulsion for satellites and spacecraft: Established technologies and novel approaches
,”
Plasma Sources Sci. Technol.
25
,
033002
(
2016
).
2.
I.
Levchenko
et al., “
Perspectives, frontiers and new horizons for plasma-based space electric propulsion
,”
Phys. Plasmas
27
,
020601
(
2020
).
3.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
R20
(
1999
).
4.
J.-P.
Boeuf
, “
Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
5.
J.
Brophy
,
R.
Gershman
,
N.
Strange
,
D.
Landau
,
R.
Merrill
, and
T.
Kerslake
, “300-kW solar electric propulsion system configuration for human exploration of near-earth asteroid,” AIAA Paper No. 2011-5514, 2011.
6.
S. E.
Cusson
,
M. P.
Georgin
,
H. C.
Dragnea
,
E. T.
Dale
,
V.
Dhaliwal
,
I. D.
Boyd
, and
A. D.
Gallimore
, “
On channel interactions in nested Hall thrusters
,”
J. Appl. Phys.
123
,
133303
(
2018
).
7.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion
(
Wiley
,
Hoboken, NJ
,
2008
), pp.
243
323
.
8.
D. R.
Lev
,
I. G.
Mikellides
,
D.
Pedrini
,
D. M.
Goebel
,
B. A.
Jorns
, and
M. S.
McDonald
, “
Recent progress in research and development of hollow cathodes for electric propulsion
,”
Rev. Mod. Plasma Phys.
3
,
1560
(
2019
).
9.
D.
Lev
,
G.
Alon
, and
L.
Appel
, “
Low current heaterless hollow cathode neutralizer for plasma propulsion–development overview
,”
Rev. Sci. Instrum.
90
,
113303
(
2019
).
10.
D. M.
Goebel
,
R. M.
Watkins
, and
K. K.
Jameson
, “
LaB6 hollow cathodes for ion and Hall thrusters
,”
J. Propul. Power
23
,
552
558
(
2007
).
11.
D.
Pedrini
,
T.
Misuri
,
F.
Paganucci
, and
M.
Andrenucci
, “
Development of hollow cathodes for space electric propulsion at Sitael
,”
Aerospace
4
,
26
(
2017
).
12.
G.
Becatti
,
R. W.
Conversano
, and
D. M.
Goebel
, “
Demonstration of 25 000 ignitions on a proto-flight compact heaterless lanthanum hexaboride hollow cathode
,”
Acta Astronaut.
178
,
181
191
(
2021
).
13.
G.
Becatti
,
D.
Pedrini
,
M. M.
Saravia
,
F.
Paganucci
,
T.
Andreussi
, and
M.
Andrenucci
, “5-100 A LaB6 hollow cathodes for high-power Hall thrusters,” in Proceedings of the 36th International Electric Propulsion Conference,Vienna, Austria, IEPC Paper No. 2019-760 (Electrical Rocket Propulsion Society, 2019).
14.
D.
Pedrini
,
R.
Albertoni
,
F.
Paganucci
, and
M.
Andrenucci
, “Development of a LaB6 cathode for high-power Hall thrusters,” in Proceedings of the 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan, IEPC Paper No. 2015-47 (Electrical Rocket Propulsion Society, 2015).
15.
E.
Chu
and
D. M.
Goebel
, “
High-current lanthanum hexaboride hollow cathode for 10-to-50-kW Hall thrusters
,”
IEEE Trans. Plasma Sci.
40
,
2133
2144
(
2012
).
16.
D. M.
Goebel
,
R. M.
Watkins
, and
K. K.
Jameson
, “
LaB6 hollow cathodes for ion and Hall thrusters
,”
J. Propul. Power
23
,
552
558
(
2007
).
17.
D. M.
Goebel
and
E.
Chu
, “
High-current lanthanum hexaboride hollow cathode for high-power Hall thrusters
,”
J. Propul. Power
30
,
35
40
(
2014
).
18.
D. M.
Goebel
,
G.
Becatti
,
S.
Reilly
,
K.
Tilley
, and
S. J.
Hall
, “High current lanthanum hexaboride hollow cathode for 20–200 kW Hall thrusters,” in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, IEPC Paper No. 2017-303 (Electrical Rocket Propulsion Society, 2017).
19.
R.
Joussot
,
L.
Grimaud
, and
S.
Mazouffre
, “
Examination of a 5 A-class cathode with a LaB6 flat disk emitter in the 2 A–20 A current range
,”
Vacuum
146
,
52
62
(
2017
).
20.
G.-C.
Potrivitu
,
R.
Joussot
, and
S.
Mazouffre
, “
Anode position influence on discharge modes of a LaB6 cathode in diode configuration
,”
Vacuum
151
,
122
132
(
2018
).
21.
S.
Mazouffre
,
R.
Joussot
,
B.
Vincentz
,
S.
Tsikata
,
S.
Oriol
, and
F.
Masson
, “Characterization of a 100 A-class LaB6 hollow cathode for high-power Hall thrusters,” in Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC Paper No. 2019-776 (Electrical Rocket Propulsion Society, 2019).
22.
I. G.
Mikellides
,
D. M.
Goebel
,
B. A.
Jorns
,
J. E.
Polk
, and
P.
Guerrero
, “Numerical simulations of the partially-ionized gas in a 100-A LaB6 hollow cathode,” in Proceedings of the 33rd International Electric Propulsion Conference, Washington, DC, IEPC Paper No. 2013-142 (Electrical Rocket Propulsion Society, 2013).
23.
D.
Pedrini
,
R.
Albertoni
,
F.
Paganucci
, and
M.
Andrenucci
, “
Experimental characterization of a lanthanum hexaboride hollow cathode for five-kilowatt-class Hall thrusters
,”
J. Propul. Power
32
,
1557
1561
(
2016
).
24.
K.
Kubota
,
Y.
Oshio
,
H.
Watanabe
,
S.
Cho
,
Y.
Ohkawa
, and
I.
Funaki
, “Numerical and experimental study on discharge characteristics of high-current hollow cathode,” in Proceedings of the 52nd Joint Propulsion Conference, Salt Lake City, UT, AIAA Paper No. 2016-4628 (Electrical Rocket Propulsion Society, 2016).
25.
M. E.
Kiziroglou
,
X.
Li
,
A. A.
Zhukov
,
P. A. J.
de Groot
, and
C. H.
de Groot
, “
Thermionic field emission at electrodeposited Ni–Si Schottky barriers
,”
Solid State Electron.
52
,
1032
1038
(
2008
).
26.
D. M.
Goebel
,
K. K.
Jameson
,
I.
Katz
, and
I. G.
Mikellides
, “
Potential fluctuations and energetic ion production in hollow cathode discharges
,”
Phys. Plasmas
14
,
103508
(
2007
).
27.
G.-C.
Potrivitu
,
S.
Mazouffre
,
L.
Grimaud
, and
R.
Joussot
, “
Anode geometry influence on LaB6 cathode discharge characteristics
,”
Phys. Plasmas
26
,
113506
(
2019
).
28.
G.
Sary
,
R.
Joussot
,
L.
Grimaud
,
L.
Garrigues
,
S.
Mazouffre
,
B.
Laurent
,
C.
Boniface
,
S.
Oriol
, and
F.
Masson
, “Experimental and numerical investigations of a 5 A-class cathode with a LaB6 flat disk emitter in the 2 A–20 A current range,” in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, IEPC Paper No. 2017-486 (Electrical Rocket Propulsion Society, 2017).
29.
I. G.
Mikellides
,
A.
Lopez Ortega
,
D. M.
Goebel
, and
G.
Becatti
, “
Dynamics of a hollow cathode discharge in the frequency range of 1–500 kHz
,”
Plasma Sources Sci. Technol.
29
,
035003
(
2020
).
30.
B. A.
Jorns
and
R. R.
Hofer
, “
Plasma oscillations in a 6-kW magnetically shielded Hall thruster
,”
Phys. Plasmas
21
,
053512
(
2014
).
31.
G.
Becatti
,
D. M.
Goebel
, and
M.
Zuin
, “
Observation of rotating magnetohydrodynamic modes in the plume of a high-current hollow cathode
,”
J. Appl. Phys.
129
,
033304
(
2021
).
32.
J.
Sheffield
,
D.
Froula
,
S. H.
Glenzer
, and
N. C.
Luhmann
,
Plasma Scattering of Electromagnetic Radiation—Theory and Measurement Techniques
(
Academic Press, Elsevier
,
2011
).
33.
I. H.
Hutchinson
,
Principles of Plasma Diagnostics
(
Cambridge University Press
,
2001
).
34.
B.
Vincent
,
S.
Tsikata
,
S.
Mazouffre
,
T.
Minea
, and
J.
Fils
, “
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
,”
Plasma Sources Sci. Technol.
27
,
055002
(
2018
).
35.
B.
Vincent
,
S.
Tsikata
, and
S.
Mazouffre
, “
Incoherent Thomson scattering measurements of electron properties in a conventional and magnetically-shielded Hall thruster
,”
Plasma Sources Sci. Technol.
29
,
035015
(
2020
).
36.
B.
Vincent
,
S.
Tsikata
,
G.-C.
Potrivitu
,
L.
Garrigues
,
G.
Sary
, and
S.
Mazouffre
, “
Electron properties of an emissive cathode: Analysis with incoherent Thomson scattering, fluid simulations and Langmuir probe measurements
,”
J. Phys. D: Appl. Phys.
53
,
415202
(
2020
).
37.
R.
van de Sanden
, “The expanding plasma jet: Experiments and model,” Ph.D. thesis (Eindhoven University of Technology, The Netherlands, 1991).
38.
R. E.
Thomas
,
H.
Kamhawi
, and
G. J.
Williams
, Jr., “High current hollow cathode plasma plume measurements,” in Proceedings of the 33rd International Electric Propulsion Conference, Washington, DC, IEPC Paper No. 2013-076 (Electrical Rocket Propulsion Society, 2013).
You do not currently have access to this content.