Semi-transparent photovoltaic devices for building integrated applications have the potential to provide simultaneous power generation and natural light penetration. CuIn1xGaxSe2 has been established as a mature technology for thin-film photovoltaics; however, its potential for Semi-Transparent Photovoltaics (STPV) is yet to be explored. In this paper, we present its carrier transport physics explaining the trend seen in recently published experiments. STPV requires deposition of films of only a few hundred nanometers to make them transparent and manifests several unique properties compared to a conventional thin-film solar cell. Our analysis shows that the short-circuit current, Jsc, is dominated by carriers generated in the depletion region, making it nearly independent of bulk and back-surface recombination. The bulk recombination, which limits the open-circuit voltage Voc, appears to be higher than usual and attributable to numerous grain boundaries. When the absorber layer is reduced below 500 nm, grain size reduces, resulting in more grain boundaries and higher resistance. This produces an inverse relationship between series resistance and absorber thickness. We also present a thickness-dependent model of shunt resistance showing its impact in these ultra-thin devices. For various scenarios of bulk and interface recombinations, shunt and series resistances, AVT, and composition of CuIn1xGaxSe2, we project the efficiency limit, which—for most practical cases—is found to be 10% for AVT25%.

1.
C. J.
Traverse
,
R.
Pandey
,
M. C.
Barr
, and
R. R.
Lunt
,
Nat. Energy
2
,
849
(
2017
).
2.
K. H.
Refat
and
R. N.
Sajjad
,
Appl. Energy
279
,
115790
(
2020
).
3.
M.
Saifullah
,
S.
Ahn
,
J.
Gwak
,
S.
Ahn
,
K.
Kim
,
J.
Cho
,
J. H.
Park
,
Y. J.
Eo
,
A.
Cho
,
J.-S.
Yoo
et al.,
J. Mater. Chem. A
4
,
10542
(
2016
).
4.
C.-C.
Chen
,
L.
Dou
,
R.
Zhu
,
C.-H.
Chung
,
T.-B.
Song
,
Y. B.
Zheng
,
S.
Hawks
,
G.
Li
,
P. S.
Weiss
, and
Y.
Yang
,
ACS Nano
6
,
7185
(
2012
).
5.
W.
Wang
,
C.
Yan
,
T.-K.
Lau
,
J.
Wang
,
K.
Liu
,
Y.
Fan
,
X.
Lu
, and
X.
Zhan
,
Adv. Mater.
29
,
1701308
(
2017
).
6.
Y. T.
Chae
,
J.
Kim
,
H.
Park
, and
B.
Shin
,
Appl. Energy
129
,
217
(
2014
).
7.
R.
Kuhn
,
A.
Boueke
,
A.
Kress
,
P.
Fath
,
G. P.
Willeke
, and
E.
Bucher
,
IEEE Trans. Electron Devices
46
,
2013
(
1999
).
8.
H.-C.
Kwon
,
A.
Kim
,
H.
Lee
,
D.
Lee
,
S.
Jeong
, and
J.
Moon
,
Adv. Energy Mater.
6
,
1601055
(
2016
).
9.
C.-Y.
Chang
,
K.-T.
Lee
,
W.-K.
Huang
,
H.-Y.
Siao
, and
Y.-C.
Chang
,
Chem. Mater.
27
,
5122
(
2015
).
10.
M. A.
Green
,
E.
Dunlop
,
J.
Hohl-Ebinger
,
M.
Yoshita
,
N.
Kopidakis
, and
X.
Hao
,
Prog. Photovoltaics: Res. Appl.
29
,
3
(
2021
).
11.
D.
Kim
,
S. S.
Shin
,
S. M.
Lee
,
J.-S.
Cho
,
J. H.
Yun
,
H. S.
Lee
, and
J. H.
Park
,
Adv. Funct. Mater.
30
,
2001775
(
2020
).
12.
M. J.
Shin
,
J. H.
Jo
,
A.
Cho
,
J.
Gwak
,
J. H.
Yun
,
K.
Kim
,
S. K.
Ahn
,
J. H.
Park
,
J.
Yoo
,
I.
Jeong
et al.,
Sol. Energy
181
,
276
(
2019
).
13.
N.
Cavallari
,
F.
Pattini
,
S.
Rampino
,
F.
Annoni
,
M.
Barozzi
,
M.
Bronzoni
,
E.
Gilioli
,
E.
Gombia
,
C.
Maragliano
,
M.
Mazzer
et al.,
Appl. Surf. Sci.
412
,
52
(
2017
).
14.
U.
Paetzold
,
M.
Jaysankar
,
R.
Gehlhaar
,
E.
Ahlswede
,
S.
Paetel
,
W.
Qiu
,
J.
Bastos
,
L.
Rakocevic
,
B.
Richards
,
T.
Aernouts
et al.,
J. Mater. Chem. A
5
,
9897
(
2017
).
15.
A.
Guchhait
,
H. A.
Dewi
,
S. W.
Leow
,
H.
Wang
,
G.
Han
,
F. B.
Suhaimi
,
S.
Mhaisalkar
,
L. H.
Wong
, and
N.
Mathews
,
ACS Energy Lett.
2
,
807
(
2017
).
16.
C. D.
Bailie
,
M. G.
Christoforo
,
J. P.
Mailoa
,
A. R.
Bowring
,
E. L.
Unger
,
W. H.
Nguyen
,
J.
Burschka
,
N.
Pellet
,
J. Z.
Lee
,
M.
Grätzel
et al.,
Energy Environ. Sci.
8
,
956
(
2015
).
17.
L. M.
Wheeler
and
V. M.
Wheeler
,
ACS Energy Lett.
4
,
2130
(
2019
).
18.
R. R.
Lunt
,
Appl. Phys. Lett.
101
,
043902
(
2012
).
19.
B. E.
Treml
and
T.
Hanrath
,
ACS Energy Lett.
1
,
391
(
2016
).
20.
K.
Forberich
,
F.
Guo
,
C.
Bronnbauer
, and
C. J.
Brabec
,
Energy Technol.
3
,
1051
(
2015
).
21.
N.
Lynn
,
L.
Mohanty
, and
S.
Wittkopf
,
Build. Environ.
54
,
148
(
2012
).
22.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
23.
P.
Paulson
,
R.
Birkmire
, and
W.
Shafarman
,
J. Appl. Phys.
94
,
879
(
2003
).
24.
M. A.
Green
, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
25.
M.
Bär
,
W.
Bohne
,
J.
Röhrich
,
E.
Strub
,
S.
Lindner
,
M.
Lux-Steiner
,
C.-H.
Fischer
,
T.
Niesen
, and
F.
Karg
,
J. Appl. Phys.
96
,
3857
(
2004
).
26.
M.
Gloeckler
,
A.
Fahrenbruch
, and
J.
Sites
, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003 (IEEE, 2003), Vol. 1, pp. 491–494.
27.
J.
Pettersson
,
C.
Platzer-Björkman
,
U.
Zimmermann
, and
M.
Edoff
,
Thin Solid Films
519
,
7476
(
2011
).
28.
I.
Repins
,
S.
Glynn
,
J.
Duenow
,
T. J.
Coutts
,
W. K.
Metzger
, and
M. A.
Contreras
,
Proc. SPIE
7409
,
74090M
(
2009
).
29.
M. A.
Zubair
,
M. T.
Chowdhury
,
M. S.
Bashar
,
M. A.
Sami
, and
M. F.
Islam
,
AIP Adv.
9
,
045123
(
2019
).
30.
L.
Bu
,
Z.
Liu
,
M.
Zhang
,
W.
Li
,
A.
Zhu
,
F.
Cai
,
Z.
Zhao
, and
Y.
Zhou
,
ACS Appl. Mater. Interfaces
7
,
17776
(
2015
).
31.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
32.
B.
Huang
,
S.
Chen
,
H.-X.
Deng
,
L.-W.
Wang
,
M. A.
Contreras
,
R.
Noufi
, and
S.-H.
Wei
,
IEEE J. Photovoltaics
4
,
477
(
2013
).
33.
M.
Gloeckler
and
J.
Sites
,
Thin Solid Films
480
,
241
(
2005
).
34.
M. A.
Contreras
,
L. M.
Mansfield
,
B.
Egaas
,
J.
Li
,
M.
Romero
,
R.
Noufi
,
E.
Rudiger-Voigt
, and
W.
Mannstadt
,
Prog. Photovoltaics: Res. Appl.
20
,
843
(
2012
).
35.
U.
Rau
,
A.
Jasenek
,
H.
Schock
,
F.
Engelhardt
, and
T.
Meyer
,
Thin Solid Films
361
,
298
(
2000
).
36.
V.
Nadenau
,
U.
Rau
,
A.
Jasenek
, and
H.
Schock
,
J. Appl. Phys.
87
,
584
(
2000
).
37.
G.
Hurkx
,
H.
De Graaff
,
W.
Kloosterman
, and
M.
Knuvers
,
IEEE Trans. Electron Devices
39
,
2090
(
1992
).
38.
R. N.
Sajjad
,
U.
Radhakrishna
, and
D. A.
Antoniadis
,
Solid State Electron.
150
,
16
(
2018
).
39.
M.
Langenkamp
and
O.
Breitenstein
,
Sol. Energy Mater. Sol. Cells
72
,
433
(
2002
).
40.
J. L.
Gray
, Handbook of Photovoltaic Science and Engineering (Wiley, 2011), Vol. 2, p. 82.
41.
Y.
Cho
,
E.
Lee
,
D.-W.
Kim
,
S.
Ahn
,
G. Y.
Jeong
,
J.
Gwak
,
J. H.
Yun
, and
H.
Kim
,
Curr. Appl. Phys.
13
,
37
(
2013
).
42.
B. L.
Williams
,
S.
Smit
,
B. J.
Kniknie
,
K. J.
Bakker
,
W.
Keuning
,
W.
Kessels
,
R. E.
Schropp
, and
M.
Creatore
,
Prog. Photovoltaics: Res. Appl.
23
,
1516
(
2015
).
43.
S.
Dongaonkar
,
J. D.
Servaites
,
G. M.
Ford
,
S.
Loser
,
J.
Moore
,
R. M.
Gelfand
,
H.
Mohseni
,
H. W.
Hillhouse
,
R.
Agrawal
,
M. A.
Ratner
et al.,
J. Appl. Phys.
108
,
124509
(
2010
).
44.
N. F.
Mott
and
R. W.
Gurney
, Electronic Processes in Ionic Crystals (Clarendon Press, 1948).
45.
Y.-K.
Liao
,
S.-Y.
Kuo
,
M.-Y.
Hsieh
,
F.-I.
Lai
,
M.-H.
Kao
,
S.-J.
Cheng
,
D.-W.
Chiou
,
T.-P.
Hsieh
, and
H.-C.
Kuo
,
Sol. Energy Mater. Sol. Cells
117
,
145
(
2013
).
46.
M.
Saifullah
,
D.
Kim
,
J.-S.
Cho
,
S.
Ahn
,
S.
Ahn
,
J. H.
Yun
,
H. S.
Lee
, and
J. H.
Park
,
J. Mater. Chem. A
7
,
21843
(
2019
).
47.
L. M.
Mansfield
,
A.
Kanevce
,
S. P.
Harvey
,
K.
Bowers
,
C.
Beall
,
S.
Glynn
, and
I. L.
Repins
,
Prog. Photovoltaics: Res. Appl.
26
,
949
(
2018
).
48.
N.-M.
Park
,
D.-H.
Cho
, and
K.-S.
Lee
,
ETRI J.
37
,
1129
(
2015
).
49.
Y.
Kong
,
J.
Li
,
Z.
Ma
,
Z.
Chi
, and
X.
Xiao
,
J. Mater. Chem. A
8
,
9760
(
2020
).
50.
R. N.
Bhattacharya
,
Sol. Energy Mater. Sol. Cells
113
,
96
(
2013
).
51.
A.
Duchatelet
,
T.
Sidali
,
N.
Loones
,
G.
Savidand
,
E.
Chassaing
, and
D.
Lincot
,
Sol. Energy Mater. Sol. Cells
119
,
241
(
2013
).
52.
J.
Bi
,
J.
Ao
,
Q.
Gao
,
Z.
Zhang
,
G.
Sun
,
Q.
He
,
Z.
Zhou
,
Y.
Sun
, and
Y.
Zhang
,
ACS Appl. Mater. Interfaces
9
,
18682
(
2017
).
53.
K.
Cheng
,
Y.
Huang
,
J.
Liu
,
M.
Xue
,
Z.
Kuang
,
Z.
Lu
,
S.
Wu
, and
Z.
Du
,
J. Alloys Compd.
684
,
237
(
2016
).
54.
T.
Nakada
,
Y.
Hirabayashi
,
T.
Tokado
,
D.
Ohmori
, and
T.
Mise
,
Sol. Energy
77
,
739
(
2004
).
55.
J. Y.
Seto
,
J. Appl. Phys.
46
,
5247
(
1975
).
56.
N.
Lu
,
L.
Gerzberg
, and
J.
Meindl
,
IEEE Electron Device Lett.
1
,
38
(
1980
).
57.
M.
Gloeckler
,
J. R.
Sites
, and
W. K.
Metzger
,
J. Appl. Phys.
98
,
113704
(
2005
).
58.
K.-T.
Lee
,
L. J.
Guo
, and
H. J.
Park
,
Molecules
21
,
475
(
2016
).
59.
B.-X.
Chen
,
H.-S.
Rao
,
H.-Y.
Chen
,
W.-G.
Li
,
D.-B.
Kuang
, and
C.-Y.
Su
,
J. Mater. Chem. A
4
,
15662
(
2016
).
60.
M. T.
Hörantner
,
P. K.
Nayak
,
S.
Mukhopadhyay
,
K.
Wojciechowski
,
C.
Beck
,
D.
McMeekin
,
B.
Kamino
,
G. E.
Eperon
, and
H. J.
Snaith
,
Adv. Mater. Interfaces
3
,
1500837
(
2016
).
61.
S.-H.
Lim
,
H.-J.
Seok
,
M.-J.
Kwak
,
D.-H.
Choi
,
S.-K.
Kim
,
D.-H.
Kim
, and
H.-K.
Kim
,
Nano Energy
82
,
105703
(
2021
).

Supplementary Material

You do not currently have access to this content.