A chaos patterned metasurface absorber (CPMA) with three strong absorption peaks and a wide bandwidth has been designed. This CPMA presents a single-layer sandwich structure, which not only enables easy optimization by adjusting the surface pattern and model size but also contributes to the continuous effective bandwidth (EBW, with an absorptivity larger than 90%) from the multiple adjacent absorption peaks. The continuous EBW is from 4.28 to 9.56 GHz with a bandwidth of 76.3%. Meanwhile, analyses on the distributions of the surface current, electric field, and power loss density illustrate that the absorption mechanisms are mainly magnetic coupling resonance and dielectric loss. The experimental results confirm the good absorption performance with multi-peak and wide bandwidth for the fabricated CPMA sample, which shows potential applications in the field of anti-electromagnetic interference.

1.
A.
Ahlbom
and
M.
Feychting
,
Br. Med. Bull.
68
,
157
165
(
2003
).
2.
C. L.
Holloway
,
E. F.
Kuester
,
J. A.
Gordon
,
J.
O’Hara
,
J.
Booth
, and
D. R.
Smith
,
IEEE Antennas Propag. Mag.
54
,
10
35
(
2012
).
3.
Y.-Z.
Wang
,
H.-X.
Xu
,
C.-H.
Wang
,
M.-Z.
Wang
, and
S.-J.
Wang
,
Acta Phys. Sin.
69
, 134101 (
2020
).
4.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat Nasser
, and
S.
Schultz
,
Phys. Rev. Lett.
84
,
4184
4187
(
2000
).
5.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
,
Science
305
,
788
792
(
2004
).
6.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
,
Phys. Rev. Lett.
100
,
207402
(
2008
).
7.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
,
Phys. Rep.
634
,
1
72
(
2016
).
8.
Y.
Ra’di
,
C. R.
Simovski
, and
S. A.
Tretyakov
,
Phys. Rev. Appl.
3
, 037001 (
2015
).
9.
F.
Ye
,
C.
Song
,
Q.
Zhou
,
X.
Yin
,
M.
Han
,
X.
Li
,
L.
Zhang
, and
L.
Cheng
,
Materials
11
, 1771 (2018).
10.
L.-H.
He
,
L.-W.
Deng
,
H.
Luo
,
J.
He
,
Y.-H.
Li
,
Y.-C.
Xu
, and
S.-X.
Huang
,
Chin. Phys. B
27
,
127801
(
2018
).
11.
X.
Li
,
C. G.
Hu
,
Q.
Feng
,
X. N.
Chen
, and
X. G.
Luo
,
Opt. Express
18
,
6598
(
2010
).
12.
Y. J.
Yoo
,
Y. J.
Kim
,
J. S.
Hwang
,
J. Y.
Rhee
,
K. W.
Kim
,
Y. H.
Kim
,
H.
Cheong
,
L. Y.
Chen
, and
Y. P.
Lee
,
Appl. Phys. Lett.
106
, 77–79 (
2015
).
13.
J. W.
Park
,
P. V.
Tuong
,
J. Y.
Rhee
,
K. W.
Kim
,
W. H.
Jang
,
E. H.
Choi
,
L. Y.
Chen
, and
Y.
Lee
,
Opt. Express
21
,
9691
(
2013
).
14.
X.
Shen
,
T. J.
Cui
,
J.
Zhao
,
H. F.
Ma
,
W. X.
Jiang
, and
H.
Li
,
Opt. Express
19
,
9401
(
2011
).
15.
S. Z.
Li
and
W.
Lu
,
J. Mater. Res. Technol.
9
,
15467
15474
(
2020
).
16.
J.
Zhang
,
J.
Tian
, and
L.
Li
,
IEEE Photonics J.
10
,
4800512
(
2018
).
17.
R. M. H.
Bilal
,
M. A.
Baqir
,
P. K.
Choudhury
,
M.
Karaaslan
,
M. M.
Ali
,
O.
Altintas
,
A. A.
Rahim
,
E.
Unal
, and
C.
Sabah
,
IEEE Access
9
,
5670
5677
(
2021
).
18.
S.
Fan
and
Y.
Song
,
J. Appl. Phys.
123
, 085110 (
2018
).
19.
H.
Jiang
,
W.
Li
,
Z.
Xue
, and
W.
Ren
,
I. E. T. Microwaves, Antennas Propag.
10
,
1141
(
2016
).
20.
S.
Li
,
J.
Gao
,
X.
Cao
,
Z.
Zhang
,
Y.
Zheng
, and
C.
Zhang
,
Opt. Express
23
,
3523
(
2015
).
21.
Y. Q.
Xu
,
P. H.
Zhou
,
H. B.
Zhang
,
L.
Chen
, and
L. J.
Deng
,
J. Appl. Phys.
110
, 044102 (
2011
).
22.
H.
Tao
,
C. M.
Bingham
,
D.
Pilon
,
K.
Fan
,
A. C.
Strikwerda
,
D.
Shrekenhamer
,
W. J.
Padilla
,
X.
Zhang
, and
R. D.
Averitt
,
J. Phys. D: Appl. Phys.
43
, 225102 (
2010
).
23.
M. C.
Tran
,
V. H.
Pham
,
T. H.
Ho
,
T. T.
Nguyen
,
H. T.
Do
,
X. K.
Bui
,
S. T.
Bui
,
D. T.
Le
,
T. L.
Pham
, and
D. L.
Vu
,
Sci. Rep.
10
,
1810
(
2020
).
24.
V. S.
Asadchy
,
I. A.
Faniayeu
,
Y.
Ra’di
,
S. A.
Khakhomov
,
I. V.
Semchenko
, and
S. A.
Tretyakov
,
Phys. Rev. X
5
,
031005
(
2015
).
25.
M.
Imani
,
D. R.
Smith
, and
P.
Hougne
,
Adv. Funct. Mater.
30
,
2005310
(
2020
).
26.
R. C.
Hansen
,
Microwave Opt. Technol. Lett.
50
,
875
877
(
2008
).
27.
F.
Ding
,
Y.
Cui
,
X.
Ge
,
Y.
Jin
, and
S.
He
,
Appl. Phys. Lett.
100
, 103506 (
2012
).
28.
L.
He
,
L.
Deng
,
Y.
Li
,
H.
Luo
,
J.
He
,
S.
Huang
, and
S.
Yan
,
Appl. Phys. A
125
,
1
–6 (
2019
).
29.
Y.-Z.
Cheng
,
R.-Z.
Gong
,
Y.
Nie
, and
X.
Wang
,
Chin. Phys. B
21
, 127801 (
2012
).
30.
P.
Munaga
,
S.
Ghosh
,
S.
Bhattacharyya
, and
K. V.
Srivastava
,
Microwave Opt. Technol. Lett.
58
,
343
347
(
2016
).
31.
C. M.
Watts
,
X.
Liu
, and
W. J.
Padilla
,
Adv. Mater.
24
,
OP98
(
2012
).
32.
K.
Muthukrishnan
and
V.
Narasimhan
,
Plasmonics
16
, 1049–1057 (
2021
).
33.
K.
Aihara
,
Proc. IEEE
90
,
919
930
(
2002
).
34.
L.
Ge
,
EPL
123
,
64001
(
2018
).
35.
H.-L.
Tsay
,
C.-Y.
Wang
,
J.-D.
Chen
, and
F.-Y.
Lin
,
Opt. Express
28
,
24037
(
2020
).
36.
Z.
Elhadj
and
C.
Sprott
,
Facta Univ. Ser.: Electron. Energetics
23
,
345
355
(
2010
).
37.
J.
Liu
,
J.
Lu
, and
X. Q.
Wu
, in
2004 8th International Conference on Control, Automation, Robotics and Vision
(IEEE,
2004
), Vols. 1–3, p.
1368
.
38.
X.
Yuan
,
C.
Zhang
,
M.
Chen
,
Q.
Cheng
,
X.
Cheng
,
Y.
Huang
, and
D.
Fang
,
IEEE Antennas Wirel. Propag. Lett.
18
,
197
(
2019
).
39.
J.
Llibre
and
A.
Rodrigues
,
Int. J. Bifurcation Chaos
25
, 1550122 (
2015
).
40.
E. N.
Lorenz
,
J. Atmos. Sci.
20
,
130
141
(
1963
).
41.
G.
Chen
,
Int. J. Bifurcation Chaos
09
,
1465
1466
(
1999
).
42.
J.
and
G.
Chen
,
Int. J. Bifurcation Chaos
12
,
659
661
(
2002
).
You do not currently have access to this content.