The performance of a 9-kW class magnetically shielded Hall thruster operating on xenon and krypton propellants is experimentally characterized. Thrust and efficiency measurements performed at discharge powers ranging from 4.5 to 9 kW indicate that the anode efficiency of krypton is 9%–18% lower than that of xenon. This difference is comparable to previous measurements reported for unshielded Hall thrusters, although it is found that unlike in previous studies, the efficiency ratio widens with increasing discharge voltage. Far-field probes are employed to measure the contributions to anode efficiency at conditions of 4.5 and 6  kW. These results indicate that mass utilization has the largest impact on the difference in performance between xenon and krypton. Assuming this mass utilization remains the dominant driver at higher voltages, it is proposed that the higher electron temperature of shielded thrusters along channel centerline coupled with the nonlinearity of the ionization cross section may explain why the efficiency gap widens with increasing voltage for shielded thrusters. The results are discussed in the context of optimizing magnetically shielded Hall thrusters for improved performance on krypton propellant.

1.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
, “
Magnetic shielding of a laboratory Hall thruster. I. Theory and validation
,”
J. Appl. Phys.
115
,
043303
(
2014
).
2.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
, “
Magnetic shielding of a laboratory Hall thruster. II. Experiments
,”
J. Appl. Phys.
115
,
043304
(
2014
).
3.
R. P.
Welle
, “Xenon and krypton availability for electric propulsion—An updated assessment,” in 29th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, El Segundo, CA, 1993).
4.
T.
Kokan
and
C. R.
Joyner
, “Mission comparison of Hall effect and gridded ion thrusters utilizing various propellant options,” in AIAA SPACE Conference and Exposition (American Institute of Aeronautics and Astronautics, 2012).
5.
D. A.
Herman
and
K. G.
Unfried
, “Xenon acquisition strategies for high power electric propulsion NASA missions,” in 62nd JANNAF Propulsion Meeting (Joint Army Navy NASA Air Force, Nashville, TN, 2015).
6.
V.
Giannetti
,
T.
Andreussi
,
A.
Leporini
,
S.
Gregucci
,
M.
Saravia
,
A.
Rossodivita
,
M.
Andrenucci
,
D.
Estublier
, and
C.
Edwards
, “Electric propulsion system trade-off analysis based on alternative propellant selection,” in Space Propulsion Conference, series and number 1 (Rome, 2016).
7.
D.
Lide
,
Handbook of Chemistry and Physics
, 79th ed. (
CRC Press
,
1998
).
8.
W. A.
Hargus
,
L. J.
Tango
, and
M. R.
Nakles
, “Background pressure effects on krypton Hall effect thruster internal acceleration,” in International Electric Propulsion Conference (Electric Rocket Propulsion Society, Washington, D.C., 2013).
9.
R. P.
Welle
, “Propellant storage considerations for electric propulsion,” in International Electric Propulsion Conference (Electric Rocket Propulsion Society, Viareggio, 1991).
10.
A. I.
Bugrova
,
A. M.
Bishaev
,
A. V.
Desyatskov
,
M. V.
Kozintseva
,
A. S.
Lipatov
, and
M.
Dudeck
, “
Experimental investigations of a krypton stationary plasma thruster
,”
Int. J. Aerosp. Eng.
2013
,
1
(
2013
).
11.
J.
Kurzyna
,
M.
Jakubczak
,
A.
Szelecka
, and
K.
Dannenmayer
, “
Performance tests of IPPLM’s krypton Hall thruster
,”
Laser Part. Beams
36
,
105
114
(
2018
).
12.
R. R.
Hofer
,
P. Y.
Peterson
,
D. T.
Jacobson
, and
D. M.
Manzella
, “Factors affecting the efficiency of krypton Hall thrusters,” in 46th Meeting of the APS Division of Plasma Physics (American Physical Society, Savannah, GA, 2004).
13.
J. A.
Linnell
and
A. D.
Gallimore
, “
Efficiency analysis of a Hall thruster operating with krypton and xenon
,”
J. Propul. Power
22
,
1402
1418
(
2006
).
14.
H.
Kamhawi
,
T.
Haag
,
D.
Jacobson
, and
D.
Manzella
, “Performance Evaluation of the NASA-300M 20 kW Hall thruster,” in 47th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, San Diego, CA, 2011).
15.
P.
Peterson
,
D.
Jacobson
,
D.
Manzella
, and
J.
John
, “The performance and wear characterization of a high-power high-Isp NASA Hall thruster,” in 41st Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, Tucson, AZ, 2005).
16.
C.
Marrese
,
A. D.
Gallimore
,
J.
Haas
,
J.
Foster
,
B.
King
,
S. W.
Kim
, and
S.
Khartov
, “An investigation of stationary plasma thruster performance with krypton propellant,” in 31st Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 1995).
17.
D. T.
Jacobson
and
D. H.
Manzella
, “50 kW class krypton Hall thruster performance,” in 39th Joint Propulsion Conference and Exhibit (NASA, Huntsville, AL, 2003).
18.
R.
Hofer
,
D.
Goebel
,
I.
Mikellides
, and
I.
Katz
, “Design of a laboratory Hall thruster with magnetically shielded channel walls, Phase II: Experiments,” in 48th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, Atlanta, GA, 2012).
19.
R. R.
Hofer
and
A. D.
Gallimore
, “Efficiency analysis of a high-specific impulse Hall thruster,” in 40th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Ft. Lauderdale, FL, 2004).
20.
R.
Hofer
,
I.
Katz
,
D.
Goebel
,
K.
Jameson
,
R.
Sullivan
,
L.
Johnson
, and
I.
Mikellides
, “Efficacy of electron mobility models in hybrid-PIC Hall thruster simulations,” in 44th Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, Hartford, CT, 2008).
21.
R. R.
Hofer
, “Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters,” Ph.D. thesis (University of Michigan, 2004).
22.
D. M.
Goebel
and
I.
Katz
, in Fundamentals of Electric Propulsion: Ion and Hall Thrusters, edited by J. H. Yuen (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2008).
23.
R. R.
Hofer
,
S. E.
Cusson
,
R. B.
Lobbia
, and
A. D.
Gallimore
, “The H9 magnetically shielded Hall thruster,” in 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Atlanta, GA, 2017).
24.
S. E.
Cusson
,
R. R.
Hofer
,
R.
Lobbia
,
B. A.
Jorns
, and
A. D.
Gallimore
, “Performance of the H9 magnetically shielded Hall thrusters,” in 35th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Atlanta, Georgia, 2017).
25.
R. R.
Hofer
,
D. M.
Goebel
, and
R. M.
Walker
, “Compact Lab6 hollow cathode for a 6-kW Hall thruster,” in 54th JANNAF Propulsion Meeting (Joint Army Navy NASA Air Force, 2018), pp. 14–17.
26.
P. Y.
Peterson
,
H.
Kamhawi
,
W.
Huang
,
J.
Yim
,
D.
Herman
,
G.
Williams
,
J.
Gilland
, and
R.
Hofer
, “NASA HERMeS Hall thruster electrical configuration characterization,” in 52nd Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 2016).
27.
E. A.
Viges
,
B. A.
Jorns
,
A. D.
Gallimore
, and
J. P.
Sheehan
, “University of Michigan’s upgraded Large Vacuum Test Facility,” in 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Vienna, 2019).
28.
J. W.
Dankanich
,
M.
Walker
,
M. W.
Swiatek
, and
J. T.
Yim
, “
Recommended practice for pressure measurement and calculation of effective pumping speed in electric propulsion testing
,”
J. Propul. Power
33
,
668
680
(
2017
).
29.
S. E.
Cusson
,
R. R.
Hofer
,
D. M.
Goebel
,
M. P.
Georgin
,
A. R.
Vazsonyi
,
B. A.
Jorns
,
A. D.
Gallimore
, and
I. D.
Boyd
, “Development of a 30-kW class magnetically shielded nested Hall thruster,” in 36th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Vienna, 2019).
30.
K. G.
Xu
and
M. L.
Walker
, “
High-power, null-type, inverted pendulum thrust stand
,”
Rev. Sci. Instrum.
80
,
055103
(
2009
).
31.
J. P.
Sheehan
,
Y.
Raitses
,
N.
Hershkowitz
, and
M.
McDonald
, “
Recommended practice for use of emissive probes in electric propulsion testing
,”
J. Propul. Power
33
,
614
637
(
2017
).
32.
R. B.
Lobbia
and
B. E.
Beal
, “
Recommended practice for use of Langmuir probes in electric propulsion testing
,”
J. Propul. Power
33
,
566
581
(
2017
).
33.
B.
Efron
and
R. J.
Tibshirani
,
An Introduction to the Bootstrap
(
CRC Press
,
1994
).
34.
W.
Huang
,
R.
Shastry
,
G. C.
Soulas
, and
H.
Kamhawi
, “Farfield plume measurement and analysis on the NASA-300M and NASA-300MS,” in 33rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Washington, D.C., 2013).
35.
R.
Shastry
,
R. R.
Hofer
,
B. M.
Reid
, and
A. D.
Gallimore
, “
Method for analyzing E × B probe spectra from Hall thruster plumes
,”
Rev. Sci. Instrum.
80
,
063502
(
2009
).
36.
W.
Huang
and
R.
Shastry
, “
Analysis of Wien filter spectra from Hall thruster plumes
,”
Rev. Sci. Instrum.
86
,
073502
(
2015
).
37.
J. S.
Miller
,
S. H.
Pullins
,
D. J.
Levandier
,
Y. H.
Chiu
, and
R. A.
Dressler
, “
Xenon charge exchange cross sections for electrostatic thruster models
,”
J. Appl. Phys.
91
,
984
991
(
2002
).
38.
M. L.
Hause
,
B. D.
Prince
, and
R. J.
Bemish
, “
Krypton charge exchange cross sections for Hall effect thruster models
,”
J. Appl. Phys.
113
,
163301
(
2013
).
39.
D. L.
Brown
,
M. L.
Walker
,
J.
Szabo
,
W.
Huang
, and
J. E.
Foster
, “
Recommended practice for use of Faraday probes in electric propulsion testing
,”
J. Propul. Power
33
,
582
613
(
2017
).
40.
H. D.
Hagstrum
, “
Auger ejection of electrons from molybdenum by noble gas ions
,”
Phys. Rev.
104
,
672
(
1956
).
41.
H. D.
Hagstrum
, “
Auger ejection of electrons from tungsten by noble gas ions
,”
Phys. Rev.
96
,
325
(
1954
).
42.
J. M.
Haas
, “Low-perturbation interrogation of the internal and near-field plasma structure of a Hall thruster using a high-speed probe positioning system,” Ph.D. thesis (University of Michigan, Ann Arbor, 2001).
43.
W.
Huang
,
H.
Kamhawi
, and
T.
Haag
, “Facility effect characterization test of NASA’s HERMeS Hall thruster,” in 52nd Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Salt Lake City, UT, 2016).
44.
D. L.
Brown
and
A. D.
Gallimore
, “
Evaluation of facility effects on ion migration in a Hall thruster plume
,”
J. Propul. Power
27
,
573
585
(
2011
).
45.
R. R.
Hofer
and
A. D.
Gallimore
, “Recent results from internal and very-near-field plasma diagnostics of a high specific impulse Hall thruster,” in 28th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Toulouse, France, 2003).
46.
D. L.
Brown
,
C. W.
Larson
,
B. E.
Beal
, and
A. D.
Gallimore
, “
Methodology and historical perspective of a Hall thruster efficiency analysis
,”
J. Propul. Power
25
,
1163
1177
(
2009
).
47.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
48.
M. C.
Bordage
,
S. F.
Biagi
,
L. L.
Alves
,
K.
Bartschat
,
S.
Chowdhury
,
L. C.
Pitchford
,
G. J.
Hagelaar
,
W. L.
Morgan
,
V.
Puech
, and
O.
Zatsarinny
, “
Comparisons of sets of electron-neutral scattering cross sections and swarm parameters in noble gases: III. Krypton and xenon
,”
J. Phys. D
46
,
334003
(
2013
).
49.
S. E.
Cusson
,
E. T.
Dale
,
B. A.
Jorns
, and
A. D.
Gallimore
, “
Acceleration region dynamics in a magnetically shielded Hall thruster
,”
Phys. Plasmas
26
,
023506
(
2019
).
50.
J. A.
Linnell
and
A. D.
Gallimore
, “
Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant
,”
Phys. Plasmas
13
,
093502
(
2006
).
51.
J. A. R.
Samson
and
R. B.
Cairns
, “
Ionization potential of molecular xenon and krypton
,”
J. Opt. Soc. Am.
56
,
1140
1141
(
1966
).
52.
D. M.
Goebel
,
K. K.
Jameson
, and
R. R.
Hofer
, “
Hall thruster cathode flow impact on coupling voltage and cathode life
,”
J. Propul. Power
28
,
355
363
(
2012
).
53.
S. E.
Cusson
,
M. P.
Byrne
,
B. A.
Jorns
, and
A. D.
Gallimore
, “Investigation into the use of cathode flow fraction to mitigate pressure-related facility effects on a magnetically shielded Hall thruster,” in Propulsion and Energy Forum (American Institute of Aeronautics and Astronautics, 2019).
54.
L. L.
Su
and
B. A.
Jorns
, “Performance at high current densities of a magnetically-shielded Hall thruster,” in Propulsion and Energy Forum (American Institute of Aeronautics and Astronautics, 2021).
55.
R.
Myers
and
C.
Carpenter
, “High power solar electric propulsion for human space exploration architectures,” in 32nd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Wiesbaden, Germany, 2011).
56.
R.
Myers
,
C.
Joyner
,
R.
Cassady
,
S.
Overton
,
T.
Kokan
,
H.
Horton
, and
W.
Hoskins
, “Affordable exploration architectures using the space launch system and high power solar electric propulsion,” in 34th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Kobe, Japan, 2015).
57.
National Academies of Sciences, Engineering, and Medicine, “Space nuclear propulsion for human mars exploration,” Technical Report (The National Academies Press, Washington, D.C., 2021).
You do not currently have access to this content.