Perovskite La2Ti2O7 nanocrystalline powder was obtained through the shock synthesis method. In the study, La2O3 and TiO2 powders were mixed through ball milling and, subsequently, shocked by a flyer at a velocity of 3.2 km/s. After shock treatment, the sample was recovered and characterized via various techniques, such as x-ray diffraction, Raman, scanning electron microscope, transmission electron microscope, and ultraviolet-visible diffuse reflection spectrum analysis, to find the presence of La2Ti2O7 nanocrystalline powder with an average grain size of approximately 30 nm in the recovered samples with different yields. Moreover, the results further confirm that the high shock temperature and long ball milling treatment induce higher activation of precursors to improve the La2Ti2O7 content in the recovered samples. By adjusting the relative density of precursor and the ball milling period, pure La2Ti2O7 nanocrystalline powder was obtained. The formation mechanism of La2Ti2O7 was carefully illustrated. This study presents a new method to synthesize La2Ti2O7 nanocrystalline powder by detonation-driven flyer impact.

1.
M.
Wu
,
S.
Yu
,
L.
He
, and
L.
Yang
,
Mater. Lett.
174
,
201
(
2016
).
2.
J.
Li
,
S.
Xiong
,
Y.
Liu
,
Z.
Ju
, and
Y.
Qian
,
Am. Chem. Soc.
5
,
981
(
2013
).
3.
H.
Tang
,
M.
Jiang
,
Y.
Zhang
,
X.
Lai
,
C.
Cui
,
H.
Xiao
,
S.
Jiang
,
E.
Ren
,
Q.
Qin
, and
R.
Guo
,
Electrochim. Acta
354
,
136760
(
2020
).
4.
R.
Jose
,
V.
Thavasi
, and
S.
Ramakrishna
,
Am. Ceram. Soc.
92
,
289
(
2010
).
5.
Y.
Yin
,
Y.
Shen
,
P.
Zhou
,
R.
Lu
,
A.
Li
,
S.
Zhao
,
W.
Liu
,
D.
Wei
, and
K.
Wei
,
Appl. Surf. Sci.
509
, 145335 (
2020
).
6.
Z.
Wang
,
F.
Wei
,
Y.
Sun
,
J.
Qi
,
Y.
He
, and
Q.
Meng
,
Ceram. Int.
45
,
12558
(
2019
).
7.
J.
Feng
,
B.
Xiao
,
C. L.
Wan
,
Z. X.
Qu
,
Z. C.
Huang
,
J. C.
Chen
,
R.
Zhou
, and
W.
Pan
,
Acta Mater.
59
,
1742
(
2011
).
8.
N.
Zhang
,
Q. J.
Li
,
S. G.
Huang
,
Y.
Yu
,
J.
Zheng
,
C.
Cheng
, and
C. C.
Wang
,
J. Alloys Compd.
652
,
1
(
2015
).
9.
W. J.
Weber
and
R. C.
Ewing
,
Science
289
,
2051
(
2000
).
10.
X. G.
Chen
and
H. S.
Zhang
,
Adv. Mater. Res.
624
,
22
(
2012
).
11.
E. V.
Dudnik
,
S. N.
Lakiza
,
N. I.
Hrechanyuk
,
A. K.
Ruban
,
V. P.
Red’ko
,
M. S.
Hlabay
, and
A. B.
Myloserdov
,
Powder Metall. Met. Ceram.
57
,
301
(
2018
).
12.
Z.
Fulan
,
Z.
Jiwu
,
S.
Lanqian
,
X.
Yihong
,
C.
Guohui
,
Z.
Yong
, and
L.
Jinlin
,
Sci. Rep.
7
,
1
(
2017
).
13.
P.
Duan
,
C.
Han
,
Y.
Zheng
,
G.
Cai
,
F.
Zhong
, and
Y.
Xiao
,
J. Alloys Compd.
831
,
154866
(
2020
).
14.
A. V.
Shlyakhtina
,
K. S.
Pigalskiy
,
D. A.
Belov
,
N. V.
Lyskov
,
E. P.
Kharitonova
,
I. V.
Kolbanev
,
A. B.
Borunova
,
O. K.
Karyagina
,
E. M.
Sadovskaya
,
V. A.
Sadykov
, and
N. F.
Eremeev
,
Dalton Trans.
47
,
2376
(
2018
).
15.
R. C.
Ewing
,
W. J.
Weber
, and
J.
Lian
,
J. Appl. Phys.
95
,
5949
(
2004
).
16.
Y.
Ku
,
L. C.
Wang
, and
C. M.
Ma
,
Chem. Eng. Technol.
30
,
895
(
2007
).
17.
Y.
Abe
and
R. M.
Laine
,
J. Am. Ceram. Soc.
103
,
4832
(
2020
).
18.
Y.
Cao
,
P.
Tang
,
Y.
Han
, and
W.
Qiu
,
J. Alloys Compd.
842
,
155581
(
2020
).
19.
W.-M.
Hou
and
Y.
Ku
,
J. Alloys Compd.
509
,
5913
(
2011
).
20.
J.
Zhang
,
W.
Hu
,
S.
Cao
, and
L.
Piao
,
Nano Res.
13
,
2313
(
2020
).
21.
H. G.
Kim
,
D. W.
Hwang
,
S. W.
Bae
,
J. H.
Jung
, and
J. S.
Lee
,
Catal. Lett.
91
,
193
(
2003
).
22.
M.
Han
,
Z.
Ma
,
W.
Zhang
, and
H.
Wang
,
J. Sol-Gel Sci. Technol.
96
,
480
(
2020
).
23.
D.
Chen
and
R.
Xu
,
Mater. Res. Bull.
33
,
409
(
1998
).
24.
A. V.
Prasadarao
,
U.
Selvaraj
, and
S.
Komarneni
,
J. Mater. Res.
7
,
2859
(
1992
).
25.
Z.
Huang
,
J.
Liu
, and
L.
Huang
,
NPG Asia Mater.
12
,
11
(
2020
).
26.
A.
Arab
,
Y.
Guo
,
Q.
Zhou
, and
P.
Chen
,
Entropy
21
,
880
(
2019
).
27.
G.
Hillel
,
L.
Meshi
,
S.
Kalabukhov
,
N.
Frage
, and
E. B.
Zaretsky
,
Acta Mater.
187
,
176
(
2020
).
28.
X.
Gao
,
P.
Chen
, and
J.
Liu
,
Mater. Lett.
65
,
685
(
2011
).
29.
H.
Yin
,
P.
Chen
,
C.
Xu
,
X.
Gao
,
Q.
Zhou
,
Y.
Zhao
, and
L.
Qu
,
Carbon
94
,
928
(
2015
).
30.
O.
Tschauner
,
S. N.
Luo
,
Y. J.
Chen
,
A.
McDowell
,
J.
Knight
, and
S. M.
Clark
,
High Press. Res.
33
,
202
(
2013
).
31.
J.
Liu
and
G.
Lu
,
Mater. Res. Bull.
31
,
1049
(
1996
).
32.
S. S.
Batasanov
,
L. I.
Kopaneva
, and
G. V.
Dorogova
,
Russ. J. Inorg. Chem.
28
,
1222
(
1983
).
33.
Z.
Tan
,
P.
Chen
,
Q.
Zhou
,
J.
Liu
,
X.
Mei
,
B.
Wang
, and
N.
Cui
,
J. Phys.: Condens. Matter
30
,
1
(
2018
).
34.
B.
Turner-Adomatis
and
N.
Thadhani
,
Mater. Sci. Eng. A
256
,
289
(
1998
).
35.
E. K.
Beauchamp
and
M. J.
Carr
,
J. Am. Ceram. Soc.
73
,
49
(
2010
).
36.
Y.
Sekine
,
K.
Kodama
,
T.
Kobayashi
,
S.
Obata
,
Y.
Chang
,
N. O.
Ogawa
,
Y.
Takano
,
N.
Ohkouchi
,
K.
Saiki
, and
T.
Sekine
,
Meteorit. Planet. Sci.
53
,
1267
(
2018
).
37.
P. W.
Chen
,
Y. S.
Ding
,
Q.
Chen
,
F. L.
Huang
, and
S. R.
Yun
,
Diamond Relat. Mater.
9
,
1722
(
2000
).
38.
V. V.
Sobolev
,
Y. N.
Taran
, and
S. I.
Gubenko
,
J. Phys. IV
7
,
C3-73
(
1997
).
39.
P.
Chen
,
F.
Huang
, and
S.
Yun
,
Carbon
41
,
2093
(
2003
).
40.
X.
Gao
,
J.
Liu
, and
P.
Chen
,
Mater. Res. Bull.
44
,
1842
(
2009
).
41.
M. A.
Meyers
,
Dynamic Behavior of Materials
(
Wiley
,
New York
,
1994
).
42.
M. A.
Meyers
,
LASL Shock Hugoniot Data
(
Wiley
,
New York
,
1994
).
43.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
Berkeley
,
CA
,
1980
).
44.
T. J.
Ahrens
and
M. L.
Johnson
,
Shockwave Date for Materials
(
1995
).
45.
J.
Soria
,
J.
Sanz
,
I.
Sobrados
,
J. M.
Coronado
,
F.
Fresno
, and
M. D.
Hernández-Alonso
,
Catal. Today
129
,
240
(
2007
).

Supplementary Material

You do not currently have access to this content.