The development of organic thin-film transistors (TFTs) for high-frequency applications requires a detailed understanding of the intrinsic and extrinsic factors that influence their dynamic performance. This includes a wide range of properties, such as the device architecture, the contact resistance, parasitic capacitances, and intentional or unintentional asymmetries of the gate-to-contact overlaps. Here, we present a comprehensive analysis of the dynamic characteristics of the highest-performing flexible organic TFTs reported to date. For this purpose, we have developed the first compact model that provides a complete and accurate closed-form description of the frequency-dependent small-signal gain of organic field-effect transistors. The model properly accounts for all relevant secondary effects, such as the contact resistance, fringe capacitances, the subthreshold regime, charge traps, and non-quasistatic effects. We have analyzed the frequency behavior of low-voltage organic transistors fabricated in both coplanar and staggered device architectures on flexible plastic substrates. We show through S-parameter measurements that coplanar transistors yield more ideal small-signal characteristics with only a weak dependence on the overlap asymmetry. In contrast, the high-frequency behavior of staggered transistors suffers from a more pronounced dependence on the asymmetry. Using our advanced compact model, we elucidate the factors influencing the frequency-dependent small-signal gain and find that even though coplanar transistors have larger capacitances than staggered transistors, they benefit from substantially larger transconductances, which is the main reason for their superior dynamic performance.

1.
M.
Noda
,
N.
Kobayashi
,
M.
Katsuhara
,
A.
Yumoto
,
S.
Ushikura
,
R.
Yasuda
,
N.
Hirai
,
G.
Yukawa
,
I.
Yagi
,
K.
Nomoto
, and
T.
Urabe
, “
An OTFT-driven rollable OLED display
,”
J. Soc. Inf. Disp.
19
,
316
322
(
2011
).
2.
D.
Raiteri
,
P.
van Lieshout
,
A.
van Roermund
, and
E.
Cantatore
, “
Positive-feedback level shifter logic for large-area electronics
,”
IEEE J. Solid-State Circuits
49
,
524
535
(
2014
).
3.
A.
Yamamura
,
S.
Watanabe
,
M.
Uno
,
M.
Mitani
,
C.
Mitsui
,
J.
Tsurumi
,
N.
Isahaya
,
Y.
Kanaoka
,
T.
Okamoto
, and
J.
Takeya
, “
Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation
,”
Sci. Adv.
4
,
eaao5758
(
2018
).
4.
U.
Zschieschang
and
H.
Klauk
, “
Organic transistors on paper: A brief review
,”
J. Mater. Chem. C
7
,
5522
5533
(
2019
).
5.
K.
Myny
, “
The development of flexible integrated circuits based on thin-film transistors
,”
Nat. Electron.
1
,
30
39
(
2018
).
6.
C.-C.
Chi
and
H.-Y.
Lin
, “Active matrix display and switching signal generator of same,” U.S. patent 7,199,778 (3 April 2007).
7.
V.
Fiore
,
P.
Battiato
,
S.
Abdinia
,
S.
Jacobs
,
I.
Chartier
,
R.
Coppard
,
G.
Klink
,
E.
Cantatore
,
E.
Ragonese
, and
G.
Palmisano
, “
An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate
,”
IEEE Trans. Circuits Syst. I Reg. Papers
62
,
1668
1677
(
2015
).
8.
U.
Zschieschang
,
J. W.
Borchert
,
M.
Giorgio
,
M.
Caironi
,
F.
Letzkus
,
J. N.
Burghartz
,
U.
Waizmann
,
J.
Weis
,
S.
Ludwigs
, and
H.
Klauk
, “
Roadmap to gigahertz organic transistors
,”
Adv. Funct. Mater.
30
,
1903812
(
2020
).
9.
T.
Sawada
,
A.
Yamamura
,
M.
Sasaki
,
K.
Takahira
,
T.
Okamoto
,
S.
Watanabe
, and
J.
Takeya
, “
Correlation between the static and dynamic responses of organic single-crystal field-effect transistors
,”
Nat. Commun.
11
,
4839
(
2020
).
10.
J. W.
Borchert
,
U.
Zschieschang
,
F.
Letzkus
,
M.
Giorgio
,
R. T.
Weitz
,
M.
Caironi
,
J. N.
Burghartz
,
S.
Ludwigs
, and
H.
Klauk
, “
Flexible low-voltage high-frequency organic thin-film transistors
,”
Sci. Adv.
6
,
eaaz5156
(
2020
).
11.
A.
Perinot
,
M.
Giorgio
,
V.
Mattoli
,
D.
Natali
, and
M.
Caironi
, “
Organic electronics picks up the pace: Mask-less, solution processed organic transistors operating at 160 MHz
,”
Adv. Sci.
8
,
2001098
(
2021
).
12.
U.
Zschieschang
,
R.
Hofmockel
,
R.
Rödel
,
U.
Kraft
,
M. J.
Kang
,
K.
Takimiya
,
T.
Zaki
,
F.
Letzkus
,
J.
Butschke
,
H.
Richter
,
J. N.
Burghartz
, and
H.
Klauk
, “
Megahertz operation of flexible low-voltage organic thin-film transistors
,”
Org. Electron.
14
,
1516
1520
(
2013
).
13.
M.
Geiger
,
M.
Hagel
,
T.
Reindl
,
J.
Weis
,
R. T.
Weitz
,
H.
Solodenko
,
G.
Schmitz
,
U.
Zschieschang
,
H.
Klauk
, and
R.
Acharya
, “
Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors
,”
Sci. Rep.
11
,
6382
(
2021
).
14.
M. J.
Kang
,
E.
Miyazaki
,
I.
Osaka
,
K.
Takimiya
, and
A.
Nakao
, “
Diphenyl derivatives of dinaphtho[2, 3-b:2, 3-f]thieno[3, 2-b]thiophene: Organic semiconductors for thermally stable thin-film transistors
,”
ACS Appl. Mater. Interfaces
5
,
2331
2336
(
2013
), PMID: 23410846.
15.
T.
Zaki
,
R.
Rodel
,
F.
Letzkus
,
H.
Richter
,
U.
Zschieschang
,
H.
Klauk
, and
J. N.
Burghartz
, “
S-parameter characterization of submicrometer low-voltage organic thin-film transistors
,”
IEEE Electron Device Lett.
34
,
520
522
(
2013
).
16.
T.
Zaki
,
R.
Rödel
,
F.
Letzkus
,
H.
Richter
,
U.
Zschieschang
,
H.
Klauk
, and
J. N.
Burghartz
, “
AC characterization of organic thin-film transistors with asymmetric gate-to-source and gate-to-drain overlaps
,”
Org. Electron.
14
,
1318
1322
(
2013
).
17.
J.
Leise
,
J.
Pruefer
,
G.
Darbandy
,
M.
Seifaei
,
Y.
Manoli
,
H.
Klauk
,
U.
Zschieschang
,
B.
Iniguez
, and
A.
Kloes
, “
Charge-based compact modeling of capacitances in staggered multi-finger OTFTs
,”
IEEE J. Electron Devices Soc.
8
,
396
406
(
2020
).
18.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
2006
).
19.
J. E.
Meyer
et al., “
MOS models and circuit simulation
,”
RCA Rev.
32
,
42
63
(
1971
).
20.
M.
Waldrip
,
O. D.
Jurchescu
,
D. J.
Gundlach
, and
E. G.
Bittle
, “
Contact resistance in organic field-effect transistors: Conquering the barrier
,”
Adv. Funct. Mater.
30
,
1904576
(
2020
).
21.
Synopsys Inc.
,
TCAD Sentaurus Device User Guide
, Version G-2019.12 (
Synopsys, Inc.
,
2019
).
22.
F.
Ante
,
F.
Letzkus
,
J.
Butschke
,
U.
Zschieschang
,
K.
Kern
,
J. N.
Burghartz
, and
H.
Klauk
, “Submicron low-voltage organic transistors and circuits enabled by high-resolution silicon stencil masks,” in 2010 International Electron Devices Meeting (IEEE, 2010), pp. 21.6.1–21.6.4.
23.
G.
Schweicher
,
G.
D’Avino
,
M. T.
Ruggiero
,
D. J.
Harkin
,
K.
Broch
,
D.
Venkateshvaran
,
G.
Liu
,
A.
Richard
,
C.
Ruzié
,
J.
Armstrong
,
A. R.
Kennedy
,
K.
Shankland
,
K.
Takimiya
,
Y. H.
Geerts
,
J. A.
Zeitler
,
S.
Fratini
, and
H.
Sirringhaus
, “
Chasing the “killer” phonon mode for the rational design of low-disorder, high-mobility molecular semiconductors
,”
Adv. Mater.
31
,
1902407
(
2019
).
24.
B.
Peng
,
Z.
Wang
, and
P. K. L.
Chan
, “
A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal
,”
J. Mater. Chem. C
4
,
8628
8633
(
2016
).
25.
A.
Perinot
,
P.
Kshirsagar
,
M. A.
Malvindi
,
P. P.
Pompa
,
R.
Fiammengo
, and
M.
Caironi
, “
Direct-written polymer field-effect transistors operating at 20 MHz
,”
Sci. Rep.
6
,
38941
(
2016
).
26.
A.
Valletta
,
M.
Rapisarda
,
S.
Calvi
,
G.
Fortunato
,
M.
Frasca
,
G.
Maira
,
A.
Ciccazzo
, and
L.
Mariucci
, “
A DC and small signal AC model for organic thin film transistors including contact effects and non quasi static regime
,”
Org. Electron.
41
,
345
354
(
2017
).
27.
J.
Pruefer
,
B.
Iniguez
,
H.
Klauk
, and
A.
Kloes
, “Compact modeling of non-linear contact resistance in staggered and coplanar organic thin-film transistors,” in Proceedings of the ICOE 2018, Bordeaux (Elsevier, 2018).
28.
S.
Jung
,
C.-H.
Kim
,
Y.
Bonnassieux
, and
G.
Horowitz
, “
Injection barrier at metal/organic semiconductor junctions with a Gaussian density-of-states
,”
J. Phys. D: Appl. Phys.
48
,
395103
(
2015
).
29.
A.
Valletta
,
A.
Daami
,
M.
Benwadih
,
R.
Coppard
,
G.
Fortunato
,
M.
Rapisarda
,
F.
Torricelli
, and
L.
Mariucci
, “
Contact effects in high performance fully printed p-channel organic thin film transistors
,”
Appl. Phys. Lett.
99
,
233309
(
2011
).
30.
A.
Benor
and
D.
Knipp
, “
Contact effects in organic thin film transistors with printed electrodes
,”
Org. Electron.
9
,
209
219
(
2008
).
31.
P.
Bahubalindrun
,
V.
Tavares
,
P.
Barquinha
,
P. G.
de Oliveira
,
R.
Martins
, and
E.
Fortunato
, “
InGaZnO TFT behavioral model for IC design
,”
Analog Integr. Circuits Signal Process.
87
,
73
80
(
2016
).
32.
F.
Hain
,
M.
Graef
,
B.
Iñíguez
, and
A.
Klös
, “
Charge based, continuous compact model for the channel current in organic thin-film transistors for all regions of operation
,”
Solid-State Electron.
133
,
17
24
(
2017
).
33.
G.
Horowitz
,
M. E.
Hajlaoui
, and
R.
Hajlaoui
, “
Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors
,”
J. Appl. Phys.
87
,
4456
4463
(
2000
).
34.
J.
Pruefer
,
J.
Leise
,
G.
Darbandy
,
A.
Nikolaou
,
J. W.
Borchert
,
H.
Klauk
,
B.
Iñíguez
,
T.
Gneiting
, and
A.
Kloes
, “
Compact modeling of non-linear contact effects in short-channel coplanar and staggered organic thin-film transistors
,”
IEEE Trans. Electron Devices
68
,
3843
3850
(
2021
).
35.
K.
Pei
,
M.
Chen
,
Z.
Zhou
,
H.
Li
, and
P. K. L.
Chan
, “
Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents
,”
ACS Appl. Electron. Mater.
1
,
379
388
(
2019
).
36.
H. M.
Dipu Kabir
,
Z.
Ahmed
,
R.
Kariyadan
,
L.
Zhang
, and
M.
Chan
, “Modeling of fringe current for semiconductor-extended organic TFTS,” in 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2016), pp. 177–180.
37.
D. E.
Ward
and
R. W.
Dutton
, “
A charge-oriented model for MOS transistor capacitances
,”
IEEE J. Solid-State Circuits
13
,
703
708
(
1978
).
38.
A.
Castro-Carranza
,
M.
Estrada
,
A.
Cerdeira
,
J.
Nolasco
,
J.
Sanchez
,
L.
Marsal
,
B.
Iniguez
, and
J.
Pallarès
, “
Compact capacitance model for OTFTs at low and medium frequencies
,”
IEEE Trans. Electron Devices
61
,
638
642
(
2014
).
39.
M.
Estrada
,
F.
Ulloa
,
M.
Ávila
,
J.
Sánchez
,
A.
Cerdeira
,
A.
Castro-Carranza
,
B.
Iñíguez
,
L. F.
Marsal
, and
J.
Pallarés
, “
Frequency and voltage dependence of the capacitance of MIS structures fabricated with polymeric materials
,”
IEEE Trans. Electron Devices
60
,
2057
2063
(
2013
).
40.
A.
Valletta
,
M.
Rapisarda
,
S.
Calvi
,
L.
Mariucci
, and
G.
Fortunato
, “A large signal non quasi static model of printed organic TFTs and simulation of CMOS circuits,” in 2017 European Conference on Circuit Theory and Design (ECCTD) (IEEE, 2017), pp. 1–4.
41.
N.
Arora
,
MOSFET Modeling for VLSI Simulation
(
World Scientific
,
2007
).
42.
S.
Luan
and
G. W.
Neudeck
, “
An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors
,”
J. Appl. Phys.
72
,
766
772
(
1992
).
43.
F.
Ante
,
D.
Kälblein
,
T.
Zaki
,
U.
Zschieschang
,
K.
Takimiya
,
M.
Ikeda
,
T.
Sekitani
,
T.
Someya
,
J. N.
Burghartz
,
K.
Kern
, and
H.
Klauk
, “
Contact resistance and megahertz operation of aggressively scaled organic transistors
,”
Small
8
,
73
79
(
2012
).
44.
J. W.
Borchert
,
B.
Peng
,
F.
Letzkus
,
J. N.
Burghartz
,
P. K. L.
Chan
,
K.
Zojer
,
S.
Ludwigs
, and
H.
Klauk
, “
Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors
,”
Nat. Commun.
10
,
1119
(
2019
).
45.
C.
Shim
,
F.
Maruoka
, and
R.
Hattori
, “
Structural analysis on organic thin-film transistor with device simulation
,”
IEEE Trans. Electron Devices
57
,
195
200
(
2010
).
46.
D. A.
Frickey
, “
Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances
,”
IEEE Trans. Microw. Theory Tech.
42
,
205
211
(
1994
).
47.
M.
Giorgio
and
M.
Caironi
, “
Radio-frequency polymer field-effect transistors characterized by s-parameters
,”
IEEE Electron Device Lett.
40
,
953
956
(
2019
).
48.
M.
Caironi
,
Y.-Y.
Noh
, and
H.
Sirringhaus
, “
Frequency operation of low-voltage, solution-processed organic field-effect transistors
,”
Semicond. Sci. Technol.
26
,
034006
(
2011
).

Supplementary Material

You do not currently have access to this content.