An extremely thin metasurface is proposed for manipulating underwater reflected waves. Each metasurface unit is only 1/61.7 of the target wavelength in thickness and comprises an air cavity capped with a thin vibration plate held in place by rubber spacers on steel supports. The unit-cell design is thin, simple, and can be adjusted to obtain a full 2π phase shift in water waves that are reflected from the metasurface. It also provides this phase shift for a broad frequency range of 20–800 Hz for incident waves. The effectiveness of the design and the resolution of the expected effect is demonstrated for sharp focusing, self-bending, and directional carpet cloaking, which are applications with great potential in energy harvesting, underwater communication, and submarine stealth and antidetection.

1.
Z.
Chen
 et al, “
Tunable metasurface for acoustic wave redirection, focusing and source illusion
,”
J. Phys. D: Appl. Phys.
52
(
39
),
395503
(
2019
).
2.
Y.
Liu
 et al, “
Willis metamaterial on a structured beam
,”
Phys. Rev. X 
9
(
1
),
011040
(
2019
).
3.
B.
Li
 et al, “
Efficient asymmetric transmission of elastic waves in thin plates with lossless metasurfaces
,”
Phys. Rev. Appl.
14
(
5
),
054029
(
2020
).
4.
L.
Schwan
 et al, “
Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions
,”
J. Appl. Phys.
123
(
9
),
091712
(
2018
).
5.
H.
Lissek
 et al, “
Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators
,”
J. Appl. Phys.
123
(
9
),
091714
(
2018
).
6.
N. J. R. K.
Gerard
,
Y.
Li
, and
Y.
Jing
, “
Investigation of acoustic metasurfaces with constituent material properties considered
,”
J. Appl. Phys.
123
(
12
),
124905
(
2018
).
7.
J.
Li
 et al, “
Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces
,”
Phys. Rev. Appl.
11
(
2
),
024016
(
2019
).
8.
J.
Li
 et al, “
Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts
,”
Nat. Commun.
9
(
1
),
1342
(
2018
).
9.
L.
Quan
and
A.
Alù
, “
Passive acoustic metasurface with unitary reflection based on nonlocality
,”
Phys. Rev. Appl.
11
(
5
),
054077
(
2019
).
10.
H.
Zhu
 et al, “
Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
42
),
26099
(
2020
).
11.
Y.
Li
 et al, “
Tunable asymmetric transmission via lossy acoustic metasurfaces
,”
Phys. Rev. Lett.
119
(
3
),
035501
(
2017
).
12.
X.
Wang
 et al, “
Extremely asymmetrical acoustic metasurface mirror at the exceptional point
,”
Phys. Rev. Lett.
123
(
21
),
214302
(
2019
).
13.
D.-C.
Chen
 et al, “
Broadband tunable focusing lenses by acoustic coding metasurfaces
,”
J. Phys. D: Appl. Phys.
53
(
25
),
255501
(
2020
).
14.
P.
Liu
 et al, “
Magnetically controlled multifunctional membrane acoustic metasurface
,”
J. Appl. Phys.
127
(
18
),
185104
(
2020
).
15.
Y.
Han
 et al, “
Low-frequency sound-absorbing metasurface with a channel of nonuniform cross section
,”
J. Appl. Phys.
127
(
6
),
064902
(
2020
).
16.
Y.
Yang
 et al, “
A metasurface carpet cloak for electromagnetic, acoustic and water waves
,”
Sci. Rep.
6
(
1
),
20219
(
2016
).
17.
P.
Cao
 et al, “
Switching acoustic propagation via underwater metasurface
,”
Phys. Rev. Appl.
13
(
4
),
044019
(
2020
).
18.
X.
Wu
 et al, “
Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length
,”
Appl. Phys. Lett.
108
(
16
),
163502
(
2016
).
19.
X.
Zhang
 et al, “
Experimental demonstration of a broadband waterborne acoustic metasurface for shifting reflected waves
,”
J. Appl. Phys.
127
(
17
),
174902
(
2020
).
20.
Z.
Chen
 et al, “
Resonator-based reflective metasurface for low-frequency underwater acoustic waves
,”
J. Appl. Phys.
128
(
5
),
055305
(
2020
).
21.
X.
Jiang
 et al, “
Ultrasonic sharp autofocusing with acoustic metasurface
,”
Phys. Rev. B
102
(
6
),
064308
(
2020
).
22.
Y.
Li
 et al, “
Metascreen-based acoustic passive phased array
,”
Phys. Rev. Appl.
4
(
2
),
024003
(
2015
).
23.
Q.
Li
and
J. S.
Vipperman
, “
Two-dimensional arbitrarily shaped acoustic cloaks composed of homogeneous parts
,”
J. Appl. Phys.
122
(
14
),
144902
(
2017
).
24.
W.-Q.
Ji
 et al, “
3D acoustic metasurface carpet cloak based on groove structure units
,”
J. Phys. D: Appl. Phys.
52
(
32
),
325302
(
2019
).
25.
B.-I.
Popa
and
S. A.
Cummer
, “
Homogeneous and compact acoustic ground cloaks
,”
Phys. Rev. B
83
(
22
),
224304
(
2011
).
26.
M.
Amin
 et al, “
Resonant beam steering and carpet cloaking using an acoustic transformational metascreen
,”
Phys. Rev. Appl.
10
(
6
),
064030
(
2018
).
27.
Q.
Li
and
J. S.
Vipperman
, “
Two-dimensional acoustic cloaks of arbitrary shape with layered structure based on transformation acoustics
,”
Appl. Phys. Lett.
105
(
10
),
101906
(
2014
).
28.
Q.
Li
and
J. S.
Vipperman
, “
Three-dimensional pentamode acoustic metamaterials with hexagonal unit cells
,”
J. Acoust. Soc. Am.
145
(
3
),
1372
1377
(
2019
).
29.
Z.
Basiri
 et al, “
Non-closed acoustic cloaking devices enabled by sequential-step linear coordinate transformations
,”
Sci. Rep.
11
(
1
),
1845
(
2021
).
30.
P. A.
Kerrian
 et al, “
Development of a perforated plate underwater acoustic ground cloak
,”
J. Acoust. Soc. Am.
146
(
4
),
2303
2308
(
2019
).
31.
C.
Faure
 et al, “
Experiments on metasurface carpet cloaking for audible acoustics
,”
Appl. Phys. Lett.
108
(
6
),
064103
(
2016
).
32.
H.
Esfahlani
 et al, “
Acoustic carpet cloak based on an ultrathin metasurface
,”
Phys. Rev. B
94
(
1
),
014302
(
2016
).
33.
G.
Ma
 et al, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
(
9
),
873
878
(
2014
).
You do not currently have access to this content.