This work demonstrates the synthesis of fcc-Co derived from an isostructural Co4N phase. When deposited at high substrate temperature (Ts) or thermal annealing (Ta) above 573 K, the out-diffusion of N from fcc-Co4N occurs, leaving behind a high purity fcc-Co phase. Generally, Co grows in a hcp structure, and a hcp to fcc-Co transformation can be facilitated at high temperature or pressure. The proposed route by nitridation and diffusion of N not only brings down the transition temperature but an impurity present in the form of hcp-Co can be avoided altogether as well. Oriented Co4N(111) thin films were grown using a CrN(111) template on a quartz substrate using dc magnetron sputtering. Samples were grown at different Ts or room temperature grown Co4N samples were annealed at different Ta. Analysis using x-ray diffraction, N K-edge x-ray absorption, x-ray photoelectron, and secondary ion mass spectroscopy confirmed the formation of fcc-Co4N or fcc-Co phases. Furthermore, it was found that Co–N bonding and N concentration get significantly reduced at high Ts or Ta due to exceptionally high N self-diffusion taking place in Co4N. Magnetic measurements using ex situ and in situ magneto-optical Kerr effect showed differences in saturation behavior and coercivity of Co4N and fcc-Co samples. By combining structural, electronic, and magnetization measurements, it has been observed that a high purity fcc-Co can be conveniently derived from the isostructural Co4N aided by an exceptionally high N self-diffusion in Co4N.

1.
R.
Lizárraga
,
F.
Pan
,
L.
Bergqvist
,
E.
Holmström
,
Z.
Gercsi
, and
L.
Vitos
,
Sci. Rep.
7
,
1
(
2017
).
2.
S. F.
Matar
,
A.
Houari
, and
M. A.
Belkhir
,
Phys. Rev. B
75
,
245109
(
2007
).
3.
M.
Zeisberger
,
S.
Dutz
,
R.
Müller
,
R.
Hergt
,
N.
Matoussevitch
, and
H.
Bönnemann
,
J. Magn. Magn. Mater.
311
,
224
(
2007
).
4.
S.
Boccato
,
R.
Torchio
,
P.
D’Angelo
,
A.
Trapananti
,
I.
Kantor
,
V.
Recoules
,
S.
Anzellini
,
G.
Morard
,
T.
Irifune
, and
S.
Pascarelli
,
Phys. Rev. B
100
,
180101
(
2019
).
5.
R.
Torchio
,
C.
Marini
,
Y. O.
Kvashnin
,
I.
Kantor
,
O.
Mathon
,
G.
Garbarino
,
C.
Meneghini
,
S.
Anzellini
,
F.
Occelli
,
P.
Bruno
,
A.
Dewaele
, and
S.
Pascarelli
,
Phys. Rev. B
94
,
024429
(
2016
).
6.
C.-S.
Yoo
,
P.
Söderlind
, and
H.
Cynn
,
J. Phys.: Condens. Matter
10
,
L311
(
1998
).
7.
R. N.
Grass
and
W. J.
Stark
,
J. Mater. Chem.
16
,
1825
(
2006
).
8.
L.
Zhang
,
H.
Wang
, and
J.
Li
,
Mater. Chem. Phys.
116
,
514
(
2009
).
9.
N. S.
Gajbhiye
,
S.
Sharma
,
A. K.
Nigam
, and
R. S.
Ningthoujam
,
Chem. Phys. Lett.
466
,
181
(
2008
).
10.
D.
Kumar
and
A.
Gupta
,
J. Magn. Magn. Mater.
308
,
318
(
2007
).
11.
N.
Banu
,
P.
Kumar
,
N.
Pandey
,
B.
Satpati
,
M.
Gupta
, and
B.
Dev
,
Thin Solid Films
675
,
177
(
2019
).
12.
A. S.
Andreev
,
J.-B. E.
de Lacaillerie
,
O. B.
Lapina
, and
A.
Gerashenko
,
Phys. Chem. Chem. Phys.
17
,
14598
(
2015
).
13.
R.
Kumar
,
M.
Manjunatha
,
A.
Anupama
,
K.
Ramesh
, and
B.
Sahoo
,
Ceram. Int.
45
,
19879
(
2019
).
14.
N.
Banu
,
S.
Singh
,
B.
Satpati
,
A.
Roy
,
S.
Basu
,
P.
Chakraborty
,
H. C. P.
Movva
,
V.
Lauter
, and
B. N.
Dev
,
Sci. Rep.
7
,
41856
(
2017
).
15.
N.
Banu
,
S.
Singh
,
S.
Basu
,
A.
Roy
,
H. C. P.
Movva
,
V.
Lauter
,
B.
Satpati
, and
B. N.
Dev
,
Nanotechnology
29
,
195703
(
2018
).
16.
M.
Ohtake
,
O.
Yabuhara
,
J.
Higuchi
, and
M.
Futamoto
,
J. Appl. Phys.
109
,
07C105
(
2011
).
17.
A.
Longo
,
L.
Sciortino
,
F.
Giannici
, and
A.
Martorana
,
J. Appl. Crystallogr.
47
,
1562
(
2014
).
18.
Seema
,
A.
Tayal
,
S.
Amir
,
S.
Pütter
,
S.
Mattauch
, and
M.
Gupta
,
J. Alloys Compd.
863
,
158052
(
2021
).
19.
P.
Tolédano
,
G.
Krexner
,
M.
Prem
,
H.-P.
Weber
, and
V.
Dmitriev
,
Phys. Rev. B
64
,
144104
(
2001
).
20.
J. S.
Kang
,
J.-Y.
Kim
,
J.
Yoon
,
J.
Kim
,
J.
Yang
,
D. Y.
Chung
,
M.-C.
Kim
,
H.
Jeong
,
Y. J.
Son
, and
B. G.
Kim
,
Adv. Energy Mater.
8
,
1703114
(
2018
).
21.
N.
Pandey
,
M.
Gupta
,
R.
Gupta
,
S.
Chakravarty
,
N.
Shukla
, and
A.
Devishvili
,
J. Alloys Compd.
694
,
1209
(
2017
).
22.
J.-S.
Fang
,
L.-C.
Yang
,
C.-S.
Hsu
,
G.-S.
Chen
,
Y.-W.
Lin
, and
G.-S.
Chen
,
J. Vac. Sci. Technol. A
22
,
698
(
2004
).
23.
R.
Gupta
,
N.
Pandey
,
A.
Tayal
, and
M.
Gupta
,
AIP Adv.
5
,
097131
(
2015
).
24.
A.
Tayal
,
M.
Gupta
,
N. P.
Lalla
,
A.
Gupta
,
M.
Horisberger
,
J.
Stahn
,
K.
Schlage
, and
H.-C.
Wille
,
Phys. Rev. B
90
,
144412
(
2014
).
25.
N.
Pandey
,
M.
Gupta
,
R.
Gupta
,
Z.
Hussain
,
V. R.
Reddy
,
D. M.
Phase
, and
J.
Stahn
,
Phys. Rev. B
99
,
214109
(
2019
).
26.
Y.
Imai
,
M.
Sohma
, and
T.
Suemasu
,
J. Alloys Compd.
611
,
440
(
2014
).
27.
G.
van Straaten
,
R.
Deckers
,
M. F. J.
Vos
,
W. M. M.
Kessels
, and
M.
Creatore
,
J. Phys. Chem. C
124
,
22046
(
2020
).
28.
D. M.
Phase
,
M.
Gupta
,
S.
Potdar
,
L.
Behera
,
R.
Sah
, and
A.
Gupta
,
AIP Conf. Proc.
1591
,
685
(
2014
).
29.
H.
Asahara
,
T.
Migita
,
T.
Tanaka
, and
K.
Kawabata
,
Vacuum
62
,
293
(
2001
).
30.
N.
Pandey
,
M.
Gupta
,
R.
Gupta
,
S. M.
Amir
, and
J.
Stahn
,
Appl. Phys. A
125
,
539
(
2019
).
31.
U.
Holzwarth
and
N.
Gibson
,
Nat. Nano
6
,
534
(
2011
).
32.
M.
Gupta
,
Seema
,
N.
Pandey
,
S.
Amir
,
S.
Pütter
, and
S.
Mattauch
,
J. Magn. Magn. Mater.
489
,
165376
(
2019
).
33.
M.
Beshkova
,
G.
Beshkov
,
M.
Marinov
,
D.
Bogdanov-Dimitrov
,
G.
Mladenov
,
T.
Tanaka
, and
K.
Kawabata
,
Mater. Manuf. Processes
16
,
531
(
2001
).
34.
N.
Pandey
,
M.
Gupta
,
R.
Rawat
,
S.
Amir
,
J.
Stahn
, and
A.
Gupta
,
Physica B
572
,
36
(
2019
).
35.
N.
Yao
,
P.
Li
,
Z.
Zhou
,
Y.
Zhao
,
G.
Cheng
,
S.
Chen
, and
W.
Luo
,
Adv. Energy Mater.
9
,
1902449
(
2019
).
36.
S. I.
Kim
,
S. R.
Lee
,
J. H.
Park
, and
B. T.
Ahn
,
J. Electrochem. Soc.
153
,
G506
(
2006
).
37.
W.
De La Cruz
,
O.
Contreras
,
G.
Soto
, and
E.
Perez-Tijerina
,
Rev. Mex. Fis.
52
,
409
(
2006
), see http://revistas.unam.mx/index.php/rmf/article/view/14201/13538.
38.
Z.
Guo
,
F.
Wang
,
Z.
Li
,
Y.
Yang
,
A. G.
Tamirat
,
H.
Qi
,
J.
Han
,
W.
Li
,
L.
Wang
, and
S.
Feng
,
J. Mater. Chem. A
6
,
22096
(
2018
).
39.
Q.
Fan
,
L.
Sang
,
D.
Jiang
,
L.
Yang
,
H.
Zhang
,
Q.
Chen
, and
Z.
Liu
,
J. Vac. Sci. Technol. A
37
,
010904
(
2019
).
40.
D.
Guo
,
Z.
Wan
,
Y.
Li
,
B.
Xi
, and
C.
Wang
,
Adv. Funct. Mater.
31
,
2008511
(
2020
).
41.
M.
Jiao
,
Z.
Wang
,
Z.
Chen
,
X.
Zhang
,
K.
Mou
,
W.
Zhang
, and
L.
Liu
,
ChemElectroChem
7
,
2065
(2020).
42.
Z.
Yao
,
A.
Zhu
,
J.
Chen
,
X.
Wang
,
C.
Au
, and
C.
Shi
,
J. Solid State Chem.
180
,
2635
(
2007
).
43.
H.
Li
,
Y.
Zhang
,
K.
Yang
,
H.
Liu
,
X.
Zhu
, and
H.
Zhou
,
Appl. Surf. Sci.
406
,
110
(
2017
).
44.
H.
Shi
and
D.
Lederman
,
J. Appl. Phys.
87
,
6095
(
2000
).
45.
M.
Matsuoka
,
K.
Ono
, and
T.
Inukai
,
Appl. Phys. Lett.
49
,
977
(
1986
).
46.
A.
Tayal
,
M.
Gupta
,
D.
Kumar
,
V. R.
Reddy
,
A.
Gupta
,
S. M.
Amir
,
P.
Korelis
, and
J.
Stahn
,
J. Appl. Phys.
116
,
222206
(
2014
).
47.
P. G.
Shewmon
,
Diffusion in Solids
(
McGraw-Hill
,
New York
,
1963
).
48.
M.
Gupta
, “Synthesis, stability and self-diffusion in iron nitride thin films: A review,” in Recent Advances in Thin Films, edited by S. Kumar and D. K. Aswal (Springer Singapore, Singapore, 2020), pp. 131–179.
49.
N.
Pandey
,
M.
Gupta
, and
J.
Stahn
,
J. Phys. Status Solidi Rapid Res. Lett.
14
,
2000294
(
2020
).
50.
H.
Chatbi
,
M.
Vergnat
,
J.-F.
Bobo
, and
L.
Hennet
,
Solid State Commun.
102
,
677
(
1997
).
You do not currently have access to this content.