In this study, molecular dynamics (MD) simulation is adopted to explore the mechanical properties and microstructure evolution of a dual-phase CoCrFeMnNi high-entropy alloy during nanoindentation. The influence of the volume fraction of the hexagonal closed-packed (hcp) phase is considered, and the Ph curves are plotted, where the indentation depths of curves initially into the plastic stage and the maximum indentation force for each curve are significantly different. At the elastic stage, the results from MD simulations are in agreement with those of the Hertz contact theory. However, the fitting coefficient k is remarkably influenced by the hcp phase volume fraction. The correlating P–h curves of plastic deformation are investigated by analyzing the instantaneous defect structures dominated by the nucleation of Shockley partial dislocations or the movements of stacking faults. Furthermore, the microstructure evolution with the increment in indentation depth is demonstrated, and it revealed that the plastic deformation is affected by the phase structure indenter that initially contacts. Unlike the slipping process for the face-centered-cube phase, a new hcp structure grain is created through dynamic recrystallization if the hcp phase is the first phase that the indenter touches.

1.
J.-W.
Yeh
,
S.-K.
Chen
,
S.-J.
Lin
,
J.-Y.
Gan
,
T.-S.
Chin
,
T.-T.
Shun
,
C.-H.
Tsau
, and
S.-Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
(
5
),
299
303
(
2004
).
2.
B. S.
Murty
,
J. W.
Yeh
, and
S.
Ranganathan
et al., High-Entropy Alloys [M] (Elsevier, 2019).
3.
Z. A.
Yong
,
A.
Ttz
,
T. B.
Zhi
,
D.
Mcgc
,
E.
Kad
,
B.
Pkl
, and
P.
Zhao
, “
Microstructures and properties of high-entropy alloys
,”
Prog. Mater. Sci.
61
,
1
93
(
2014
).
4.
O. A.
Waseem
and
H. J.
Ryu
, “
Combinatorial synthesis and analysis of AlxTayVz-Cr20Mo20Nb20Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high-entropy alloys: Oxidation behavior
,”
J. Alloys Compd.
828
,
154427
(
2020
).
5.
X.-W.
Qiu
,
Y.-P.
Zhang
,
H.
Li
, and
C.-G.
Liu
, “
Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy
,”
J. Alloys Compd.
549
,
195
199
(
2013
).
6.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng. A
375–377
,
213
218
(
2004
).
7.
B.
Gludovatz
,
A.
Hohenwarter
,
D.
Catoor
,
E. H.
Chang
,
E. P.
George
, and
R. O.
Ritchie
, “
A fracture-resistant high-entropy alloy for cryogenic applications
,”
Science
345
(
6201
),
1153
(
2014
).
8.
Y.
Qi
,
T.
He
,
H.
Xu
,
Y.
Hu
, and
M.
Feng
, “
Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation
,”
J. Alloys Compd.
871
,
159516
(
2021
).
9.
H.
Shahmir
,
J.
He
,
Z.
Lu
,
M.
Kawasaki
, and
T. G.
Langdon
, “
Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion
,”
Mater. Sci. Eng. A
685
,
342
348
(
2017
).
10.
Y.
Qi
,
Zhaomin
, and
M.
Feng
, “
Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression
,”
J. Alloys Compd.
851
,
156923
(
2021
).
11.
J.
Guo
,
M.
Goh
,
Z.
Zhu
,
X.
Lee
,
M. L. S.
Nai
, and
J.
Wei
, “
On the machining of selective laser melting CoCrFeMnNi high-entropy alloy
,”
Mater. Des.
153
,
211
220
(
2018
).
12.
Y.
Qi
,
X.
Chen
, and
M.
Feng
, “
Molecular dynamics-based analysis of the effect of voids and HCP-phase inclusion on deformation of single-crystal CoCrFeMnNi high-entropy alloy
,”
Mater. Sci. Eng. A.
791
,
139444
(
2020
).
13.
W.
Ji
,
W.
Wang
,
H.
Wang
,
J.
Zhang
,
Y.
Wang
,
F.
Zhang
, and
Z.
Fu
, “
Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
,”
Intermetallics.
56
,
24
27
(
2015
).
14.
Z.
Li
,
C. C.
Tasan
,
K. G.
Pradeep
, and
D.
Raabe
, “
A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior
,”
Acta Mater.
131
,
323
335
(
2017
).
15.
R. K.
Song
,
L. J.
Wei
,
C. X.
Yang
, and
S. J.
Wu
, “
Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
,”
J. Alloys Compd.
744
,
552
560
(
2018
).
16.
J.-W.
Yeh
,
C.-W.
Tsai
,
P. K.
Liaw
,
T.
Yuan
, and
Tang
, “
Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy
,”
Acta Mater.
99
,
247
258
(
2015
).
17.
Qingyun
,
J. P.
Lin
,
X. H.
Liu
,
H.
An
,
Y.
Wang
, and
X. Z.
Zhang
, “
Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy
,”
Mater. Res. Lett.
6
,
236
243
(
2018
).
18.
L.
Guo
,
D.
Xiao
,
W.
Wu
,
S.
Ni
, and
M.
Song
, “
Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100-xFex high entropy alloys processed by spark plasma sintering
,”
Intermetallics.
103
,
1
11
(
2018
).
19.
Q.
Fang
,
Y.
Chen
,
J.
Li
,
C.
Jiang
,
B.
Liu
,
Y.
Liu
, and
P. K.
Liaw
, “
Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys
,”
Inter. J. Plasticity
114
,
161
173
(
2019
).
20.
P.
Hirel
, “
Atomsk: A tool for manipulating and converting atomic data files
,”
Comput. Phys. Commun.
197
,
212
219
(
2015
).
21.
T. J.
Rupert
, “
Strain localization in a nanocrystalline metal: Atomic mechanisms and the effect of testing conditions
,”
J. Appl. Phys.
114
(
3
),
033527
(
2013
).
22.
P. P.
Bhattacharjee
,
G. D.
Sathiaraj
,
M.
Zaid
,
J. R.
Gatti
,
C.
Lee
,
C.-W.
Tsai
, and
J.-W.
Yeh
, “
Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy
,”
J. Alloys Compd.
587
,
544
552
(
2014
).
23.
M. C.
Gao
,
C.
Niu
, and
C.
Jiang
et al., Applications of Special Quasi-Random Structures to High-Entropy Alloys[M]//High-Entropy Alloys (Springer, Cham, 2016), pp.
333
368
.
24.
D.-Q.
Doan
,
T.-H.
Fang
, and
T.-H.
Chen
, “
Effects of grain and twin boundary on friction and contact characteristics of CuZrAl nanocrystallines
,”
Appl. Surf. Sci.
524
,
146458
(
2020
).
25.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
26.
W. M.
Choi
,
H. J.
Yong
,
S. S.
Sohn
,
S.
Lee
, and
B. J.
Lee
, “
Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study
,”
npj Computational Mater.
4
,
1
(
2018
).
27.
I. A.
Alhafez
,
C. J.
Ruestes
,
E. M.
Bringa
, and
H. M.
Urbassek
, “
Nanoindentation into a high-entropy alloy—An atomistic study
,”
J. Alloys Compd.
803
,
618
624
(
2019
).
28.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
, “
Automated identification and indexing of dislocations in crystal interfaces,”
Modelling Simul. Mater. Sci. Eng.
20
(
8
),
085007
(
2012
).
29.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modelling Simul. Mater. Sci. Eng.
18
(
1
),
2154
2162
(
2010
).
30.
H. R.
Hertz
, “
The principles of mechanics (Slovak translation of HR hertz’s with annotations and introduction)
,”
J. School Health
24
(
6
),
174
176
(
2002
).
31.
C.
Li
,
X.
Li
,
Y.
Wu
,
F.
Zhang
, and
H.
Huang
, “
Deformation mechanism and force modelling of the grinding of YAG single crystals
,”
Int. J. Mach. Tools Manuf.
143
,
23
37
(
2019
).
32.
C.
Li
,
Y.
Wu
,
X.
Li
,
L.
Ma
,
F.
Zhang
, and
H.
Huang
, “
Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals
,”
J. Mater. Process. Technol.
279
,
116577
(
2020
).
33.
K.
Durst
,
B.
Backes
, and
M.
Gken
, “
Indentation size effect in metallic materials: Correcting for the size of the plastic zone
,”
Scripta Mater.
52
(
11
),
1093
1097
(
2005
).
34.
D. K.
Mishra
,
M.
Meraj
,
S. K.
Badjena
, and
S.
Pal
, “
Structural evolution and dislocation behaviour study during nanoindentation of Mo20W20Co20Ta20Zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation
,”
Mol. Simul.
45
(
7
),
572
584
(
2019
).
35.
X.
Sun
,
H.
Zhang
,
W.
Li
,
X.
Ding
,
Y.
Wang
, and
L.
Vitos
, “
Generalized stacking fault energy of Al-doped CrMnFeCoNi high-entropy alloy
,”
Nanomaterials.
10
(
1
), 59 (
2020
).
36.
S.
Goel
, “
Shear instability of nanocrystalline silicon carbide during nanometric cutting
,”
Appl. Phys. Lett.
100
(
23
),
535
538
(
2012
).
37.
N.
Dunne
,
S.
Goel
,
N.
Faisal
,
C.
Haque
, and
C.-W.
Beake
, “
Twinning anisotropy of tantalum during nanoindentation
,”
Mater. Sci. Eng. A.
627
,
249
261
(
2015
).
You do not currently have access to this content.