This study develops a ferrofluid-lubricated thrust bearing with an air cushion. The bearing comprises a rotor, a stator, and a ferrofluid ring formed between them due to absorption by an annular magnet under the stator. The design makes it possible for the air cushion (air sealed inside the ferrofluid ring) as well as the magnetized ferrofluid to supply supporting forces. A model of the bearing for a static supporting force is proposed and validated by experiments. As the gap between the rotor and stator was 0.25 mm, the maximum static supporting force of the bearing was 3.2 N, much higher than the support provided by the pure ferrofluid ring (without the air cushion, 1.7 N). The operating space of the bearing was detected by multicycle load–retract tests with remarkably high and repeatable accuracy. The results of dynamic experiments show that the speed of rotation of the rotor has a minor effect on the supporting force. Such a ferrofluid-lubricated bearing offers promise for use in precise positioning or low-friction systems.

1.
S.
Boyde
,
R. Soc. Chem.
4
,
293
(
2002
).
2.
E.
Andablo-Reyes
,
J.
de Vicente
,
R.
Hidalgo-Álvarez
,
C.
Myant
,
T.
Reddyhoff
, and
H. A.
Spikes
,
Tribol. Lett.
39
,
109
114
(
2010
).
3.
G.
Sun
,
T.
Liu
,
P.
Sen
,
W.
Shen
,
C.
Gudeman
, and
C.-J.
Kim
,
J. Microelectromech. Syst.
23
,
147
156
(
2014
).
4.
M. L.
Chan
,
B.
Yoxall
,
H.
Park
,
Z.
Kang
,
I.
Izyumin
,
J.
Chou
,
M. M.
Megens
,
M. C.
Wu
,
B. E.
Boser
, and
D. A.
Horsley
, in
IEEE 24th International Conference on Micro Electro Mechanical Systems
(IEEE,
2011
), p.
1237
.
5.
M.
Mastrangeli
,
Adv. Mater.
27
,
4254
4272
(
2015
).
6.
M. L.
Chan
,
B.
Yoxall
,
H.
Park
,
Z.
Kang
,
I.
Izyumin
,
J.
Chou
,
M. M.
Megens
,
M. C.
Wu
,
B. E.
Boser
, and
D. A.
Horsley
,
Sens. Actuators A Phys.
177
,
1
9
(
2012
).
7.
B. E.
Yoxall
,
M.-L.
Chan
,
R. S.
Harake
,
T.
Pan
, and
D. A.
Horsley
,
J. Microelectromech. Syst.
21
,
721
729
(
2012
).
8.
T.
Gillespie
,
J. Colloid Interface Sci.
36
,
119
123
(
1971
).
9.
J.
Wen
,
D.
Dini
, and
T.
Reddyhoff
,
Tribol. Int.
149
,
8
(
2020
).
10.
S.
Odenbach
,
Colloids Surf. A
217
,
171
178
(
2003
).
11.
Y.
Melikhov
,
S. J.
Lee
,
D. C.
Jiles
,
D. H.
Schmidt
,
M. D.
Porter
, and
R.
Shinar
,
J. Appl. Phys.
93
,
8438
8440
(
2003
).
12.
W.
Huang
,
C.
Shen
,
S.
Liao
, and
X.
Wang
,
Tribol. Lett.
41
,
145
151
(
2011
).
13.
C. M.
Oldenburg
,
S. E.
Borglin
, and
G. J.
Moridis
,
Trans. Porous Media
38
,
319
344
(
2000
).
14.
X.
Xie
,
Q.
Dai
,
W.
Huang
, and
X.
Wang
,
J. Phys. D: Appl. Phys.
54
,
175004
(
2021
).
15.
S.
Lampaert
,
J. W.
Spronck
, and
R.
Ostayen
,
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
232
,
14
25
(
2018
).
16.
Z. H.
Wei
and
C. P.
Lee
,
J. Appl. Phys.
105
,
07B523
(
2009
).
17.
L.
Vékás
,
M.
Raşa
, and
D.
Bica
,
J. Colloid Interface Sci.
231
,
247
254
(
2000
).
18.
H. B.
Hu
,
J.
Wen
,
L. Y.
Bao
,
L. B.
Jia
,
D.
Song
,
B. W.
Song
,
G.
Pan
,
M.
Scaraggi
,
D.
Dini
,
Q. J.
Xue
, and
F.
Zhou
,
Sci. Adv.
3
,
1–9
(
2017
).
19.
J.
Wen
,
T.
Reddyhoff
,
S. T.
Hu
,
D.
Puhan
, and
D.
Dini
,
Tribol. Int.
144
,
106129
(
2020
).
20.
A. N.
Afifah
,
S.
Syahrullail
, and
N. A. C.
Sidik
,
Renew. Sustainable Energy Rev.
55
,
1030
1040
(
2016
).
21.
C.
Holm
and
J.
Weis
,
Curr. Opin. Colloid Interface Sci.
10
,
133
140
(
2005
).

Supplementary Material

You do not currently have access to this content.