A coaxial configuration of discharge is proposed for plasma surface treatment and possibly other applications. The reactor is based on a cylindrical structure, with the inner cylinder radio frequency powered (RF, 13.56 MHz) and the outer cylinder grounded, playing the role of a guard ring. The charged species can escape from the inner cavity through two longitudinal slits made in both cylinders, aligned to each other, and producing a linear slab of plasma. Hence, it is possible to project the plasma directly onto a surface placed under the slits, called external plate. The operation of this device is uniform and stable in argon for a large pressure range (0.8–50 mbar). Furthermore, simulations using the Plasimo™ software package were performed to evaluate the plasma parameters and to explain the experimental results. The ion flux on the surface exposed to this plasma increases when RF power increases, and the pressure or gap distance to the plate decreases. This cylindrical capacitive coupled plasma configuration can be very effective for surface treatment of different materials (conductors or insulators) on large area (when the plate or the system is moving perpendicular to the slits) due to energetic ions and active species released from the plasma.

1.
Ch.
Hollenstein
,
A. A.
Howling
,
Ph.
Guittienne
, and
I.
Furno
,
Plasma Phys. Control. Fusion
57
,
014010
(
2015
).
2.
M. A.
Lieberman
and
A. J.
Lichtenberg
, in
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
John Wiley & Sons Inc.
,
2005
), ISBN: 9780471720010.
3.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radiofrequency Plasmas
(
Cambridge University Press
,
Cambridge
,
2011
).
5.
H. R.
Koenig
and
L. I.
Maissel
,
IBM J. Res. Dev.
14
,
168
(
1970
).
6.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principle of Plasma Discharges and Materials Processing
(
Wiley
,
1994
).
7.
K.
Köhler
,
J. W.
Coburn
,
D. E.
Horne
,
E.
Kay
, and
J. H.
Keller
,
J. Appl. Phys.
57
,
59
(
1985
).
8.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
43
,
4965
(
1972
).
9.
M. J.
Cooke
and
J.
Pelletier
,
Appl. Phys. Lett.
53
,
19
(
1988
).
10.
R.
Hytry
and
D.
Boutard-Gabillet
,
Appl. Phys. Lett.
69
,
752
(
1996
).
11.
Y.
Catherine
and
P.
Couderc
,
Thin Solid Films
144
,
265
(
1986
).
12.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
13.
M. V.
Alves
,
M. A.
Lieberman
,
V.
Vahedi
, and
C. K.
Birdsall
,
J. Appl. Phys.
69
,
3823
(
1991
).
14.
C. M.
Horwitz
,
J. Vac. Sci. Technol. A
1
,
60
(
1983
).
15.
E.
Kawamura
,
M. A.
Lieberman
,
A. J.
Lichtenberg
, and
E. A.
Hudson
,
J. Vac. Sci. Technol. A
25
,
1456
(
2007
).
16.
A. F.
Alexandrov
,
A. Y.
El Sammoni
,
V. A.
Godiak
, and
A. A.
Kuzovnikov
, in
Proceedings of the VIII ICPIG
,
Vienna, Austria
1967
, p.
165
.
17.
H.
Baránková
,
L.
Bardos
, and
K.
Silins
,
ECS J. Solid State Sci. Technol.
5
(
9
),
N57
N60
(
2016
).
18.
M. A.
Lieberman
and
S. E.
Savas
,
J. Vac. Sci. Technol. A
8
,
1632
(
1990
).
19.
J.
Upadhyay
,
J.
Peshl
,
S.
Popovic
,
A.-M.
Valente-Feliciano
, and
L.
Vuskovic
,
AIP Adv.
8
,
085008
(
2018
).
20.
G. J. M.
Hagelaar
, “Modeling of microdischarges for display technology,” Ph.D. thesis (Eindhoven University of Technology, 2000).
21.
G. J. M.
Hagelaar
,
Brief Documentation of BOLSIG+ Version 03/2016 (Laboratoire Plasma et Conversion d0Energie (LAPLACE)
(
Universit Paul Sabatier
,
2016
), Vol. 118.
22.
See www.lxcat.net for the Viehland database.
23.
Handbook of Physical Quantities
, edited by
I. S.
Grigoriev
and
E. Z.
Meilikhov
(
CRC Press
,
Boca Raton
,
FL
,
1997
).
24.
J. T.
Gudmundsson
and
A.
Hecimovic
,
Plasma Sources Sci. Technol.
26
,
123001
(
2017
).
25.
Y.-X.
Liu
 et al.,
Phys. Plasmas
24
,
073512
(
2017
).
26.
V. I.
Kolobov
,
Glow Discharges: Stratification Encyclopedia of Plasma Technology
(
Taylor and Francis
,
London
,
2017
).
27.
V. I.
Kolobov
,
J. Phys. D: Appl. Phys.
39
,
R487
(
2006
).
28.
Y. B.
Golubovskii
 et al.,
Tech. Phys.
59
,
1787
(
2014
).
29.
A. S.
Penfold
and
J. A.
Thornton
,
Czech J. Phys.
23
,
431435
(
1973
).
30.
H. C. J.
Mulders
 et al.,
IEEE Trans. Plasma Sci.
36
,
1380
(
2008
).
31.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
32.
See https://plasimo.phys.tue.nl/ for the details about the Plasimo package software and tutotials.
33.
Y.
Ohtsu
and
H.
Fujita
,
Jpn. J. Appl. Phys.
43
,
795
(
2004
).
34.
V. I.
Kolobov
 et al.,
J. Phys. D: Appl. Phys.
53
,
25LT01
(
2020
).
35.
D. I. N. E.
Sébastien
,
Effet de la Fréquence Dans les Décharges VHF sur les Caractéristiques des Plasmas Utilisés Pour le Dépôt de Silicium Microcristallin
(
Université Paris Sud
,
Paris
,
2006
).
36.
M.
Tanişli
,
N.
Şahin
, and
S.
Demir
,
Pramana
89
(
3
),
36
(
2017
).
37.
M.
Tanışlı
,
N.
Şahin
,
S.
Demir
, and
S.
Mertadam
,
Plasma Phys. Rep.
45
(
4
),
376
386
(
2019
).
38.
A. M.
Ahadi
,
T.
Trottenberg
,
S.
Rehders
,
T.
Strunskus
,
H.
Kersten
, and
F.
Faupel
,
Phys. Plasmas
22
(
8
),
083513
(
2015
).
39.
R. W.
Boswell
and
A.
Bouchoule
,
Plasma Chem. Plasma Process.
8
(
1
),
53
(
1988
).
40.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
IEEE Trans. Plasma Sci.
19
,
660
(
1991
).
41.
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
29
,
113001
(
2020
).
42.
K.
Bera
 et al.,
J. Appl. Phys.
129
,
053304
(
2021
).
You do not currently have access to this content.